首页|数据透视方法下的充电桩低频辐射特性分析

数据透视方法下的充电桩低频辐射特性分析

扫码查看
GB/T 18487.2-2017新增对充电桩设备低频电磁辐射发射的具体要求,但大量测试数据仅以"频率-幅度"二维数据表格的形式记录和呈现.为直观获得大样本直流充电桩低频辐射干扰的分布特点和趋势,采用数据透视的分析方法对大样本数据进行分析.将直流充电桩关键字作为信息标签,针对信息标签对测试数据进行筛选排序、分类汇总和交互式查询.通过平面投影、直方图、区间化幅度概率分布等数据可视化方法,呈现大样本数据的统计特性.采用数据透视方法进行直流充电桩低频辐射特性分析,以直观获得样本数据的统计规律.该规律能够为统计产品特性、提高产品性能提供直观的参考依据.数据透视分析方法同样适用于其他测试数据的统计特性分析.
Analysis of Charging Pile Low-Frequency Radiation Characterization Under Data Pivot Approach
GB/T 18487.2-2017 adds new specific requirements for low-frequency electromagnetic radiation emission of charging pile equipment,but a large amount of test data is only recorded and presented in the form of"frequency-amplitude"two-dimensional data table.To visually obtain the distribution characteristics and trends of low-frequency radiation nuisance of direct current charging piles in large samples,the analysis method of data pivot is used to analyze the large sample data.The direct current charging pile keywords are used as information tags,and the test data are filtered and sorted,categorized and summarized,and interactively queried for the information tags.The statistical characteristics of the large-sample data are presented through data visualization methods such as plane projection,histogram,and internalized magnitude probability distribution,etc.The data pivot approach is used to analyze the low-frequency radiation characteristics of direct current charging piles,and the statistical law of the sample data can be obtained intuitively.The law can provide intuitive reference basis for the statistics of product characteristics and improve product performance.The data pivot analysis approach is also applicable to the statistical characterization analysis of other test data.

Direct current charging pileLow-frequency radiated emissionsElectromagnetic compatibilityData pivotingInternalizationAmplitude probability distributionStatistical properties of data

林珊珊、杨志超、赵鹏、赵明敏

展开 >

中国电力科学研究院有限公司,北京 100192

西藏羊八井高海拔电气安全与电磁环境国家野外科学观测研究站,西藏拉萨 851517

直流充电桩 低频辐射发射 电磁兼容 数据透视 区间化 幅度概率分布 数据统计特性

国家电网公司总部科技基金资助项目

5200-202113091A-0-0-00

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(7)
  • 9