首页|电网架空输电线路绝缘子缺陷识别算法研究

电网架空输电线路绝缘子缺陷识别算法研究

扫码查看
电网架空输电线路绝缘子长期处于外部暴露环境中,易产生侵蚀、开裂、破碎等问题,导致电网运行的可靠性降低.为此,对电网架空输电线路绝缘子缺陷识别算法进行了研究.通过滤波去除采集的绝缘子图像乘性噪声,利用不同尺度高斯掩膜进行卷积处理,并结合图像梯度方向提取表面缺陷特征.将构建的深度前馈神经网络作为基本架构,设置三层网络结构的自编码器.在前馈网络的优化目标函数中融入惩罚因子,以构建稀疏性限制条件.通过遗传算法优化自编码器初始权值,经网络迭代得到表面缺陷识别结果.试验结果表明,所提算法对绝缘子缺陷的识别准确率始终高于90%、平均识别用时为1.72 s,具有显著的可行性.该研究对监控安防、图像分析等领域具有一定的启示意义.
Research on Insulator Defect Recognition Algorithm for Overhead Transmission Line in Power Grid
Overhead transmission line insulators in power grid has been in the external exposure environment for a long time,which is prone to erosion,cracking,crushing and other problems,leading to a reduction in the reliability of grid operation.For this reason,the overhead transmission line in power grid insulator defect recognition algorithm is researched.The collected insulator image multiplicative noise is removed by filtering,and the surface defect features are extracted by utilizing different scale Gaussian masks for convolution processing,combined with the image gradient direction.The constructed deep feed-forward neural network is used as the basic architecture,and the self-encoder with three-layer network structure is set up.The penalty factor is incorporated into the optimization objective function of the feed-forward network,and the sparsity constraints are constructed.The initial weights of the self-encoder are optimized by genetic algorithm,and the surface defect recognition results are obtained by network iteration.The experimental results show that the proposed algorithm always has a recognition accuracy of insulator defects higher than 90%,and the average recognition time is 1.72 s,which has significant feasibility.This research is of great revelation to the fields of monitoring and security,image analysis and so on.

Power gridOverhead transmission linesDeep learningInsulatorGaussian maskSelf-enconderDefect identification

季旭、梁岩涛、张剑伟

展开 >

国家电网有限公司,北京 100000

国网甘肃省电力有限公司建设分公司,甘肃兰州 730000

电网 架空输电线路 深度学习 绝缘子 高斯掩膜 自编码器 缺陷识别

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(7)
  • 8