首页|基于GA-WNN模型的光伏中期功率预测研究

基于GA-WNN模型的光伏中期功率预测研究

扫码查看
为解决光伏发电存在限电情况下,光伏中期功率预测结果偏小导致预测精度降低的问题,提出了一种基于光伏可用功率的遗传算法(GA)优化小波神经网络(WNN)的预测模型.GA-WNN模型在预测日的相近日期内覆盖晴天、雨天、多云等多种天气类型,通过模糊C-均值聚类算法辨识限电情况,并将光伏可用功率作为训练目标,建立了WNN光伏中期预测训练模型.GA-WNN模型以预测日获取的光伏数值天气预报作为输入,经过训练后可以直接预测未来 1~10 d的光伏中期功率.通过新疆某光伏运行电站的实际运行数据进行验证,预测精度达96%以上.将GA应用于WNN预测模型中,可显著提高光伏中期功率预测精度.
Mid-Term Power Prediction Study of Photovoltaic Based on GA-WNN Model
To solve the problem of reduced prediction accuracy due to small photovoltaic medium-term power prediction results in the presence of power limitation in photovoltaic power generation,a wavelet neural network(WNN)prediction model optimized by genetic algorithm(GA)based on photovoltaic available power is proposed.GA-WNN model establishes a WNN photovoltaic medium-term prediction training model by covering a variety of weather types such as sunny,rainy,and cloudy days within the similar dates of the prediction day,recognizing the power limitation situation through the fuzzy C-mean clustering algorithm,and taking the photovoltaic available power as the training target.GA-WNN model takes the photovoltaic numerical weather forecast obtained on the forecast day as input,and after training,it can directly predict the photovoltaic medium-term power for the next 1~10 days.It is validated by the actual operation data of a photovoltaic operating power station in Xinjiang,and the prediction accuracy reaches more than 96% .The application of GA to the WNN prediction model can significantly improve the medium-term photovoltaic power prediction accuracy.

PhotovoltaicMedium-term power predictionGenetic algorithm(GA)Wavelet neural network(WNN)Available powerFuzzy C-mean clustering

张慧娥、刘大贵、朱婷婷、白彩清、张慧敏

展开 >

新疆工程学院能源工程学院,新疆 乌鲁木齐 830023

可再生能源发电与并网技术教育部工程研究中心(新疆大学电气工程学院),新疆 乌鲁木齐 830047

国网新疆电力有限公司电力调度控制中心,新疆 乌鲁木齐 830063

内蒙古超高压供电局,内蒙古 呼和浩特 010080

展开 >

光伏 中期功率预测 遗传算法 小波神经网络 可用功率 模糊C-均值聚类

新疆自治区自然科学基金资助项目

2020D01B18

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(9)
  • 13