首页|分层模型与改进IA的含DG配电网故障定位研究

分层模型与改进IA的含DG配电网故障定位研究

扫码查看
常规的含分布式发电(DG)装置的配电网故障定位方法忽略了配电网馈线节点数量的影响,导致定位结果精度不高.因此,将分层模型与改进免疫算法(IA)相结合,设计了分层模型与改进IA的含DG配电网故障定位方法.首先,构建三层含DG配电网故障分层模型,并分析单节点故障信息.然后,通过改进基础IA的抗体间相似度,优化算法的期望繁殖度.最后,基于改进后的IA优化分层模型的节点搜索路径,建立世界坐标系并融合DG开关状态得到最终的故障定位信息.试验结果表明:应用该方法定位的故障节点距离与真实的故障节点距离最大差值仅为0.013 km.该方法表现出的适应度值曲线与最优适应度值曲线高度接近,定位精度较高,能够满足含DG配电网故障运维工作的现实需求.
Research on Hierarchical Model and Improved IA for Fault Localization in DG-Containing Distribution Network
Conventional fault localization methods for distribution network distributed generation(DG)-containing devices ignore the effect of the number of feeder nodes in the distribution network,which leads to poor accuracy of the localization results.Therefore,the hierarchical model and improved immunity algorithm(IA)for fault localization method with DG-containing distribution networks is designed by combining hierarchical model and the improved IA.Firstly,a three-layer DG-containing distribution network fault hierarchical model is constructed,and single-node fault information is analyzed.Then,the expected reproduction degree of the algorithm is optimized by improving the inter-antibody similarity of the base IA.Finally,the node search path of the hierarchical model is optimized based on the improved IA,the world coordinate system and fuse the DG switch states are establishod to obtain the final fault location information.The experimental results show that the maximum difference between the fault node distance derived from the application of the method and the real fault node distance is only 0.013 km.The method exhibits an adaptation value curve that is highly close to the optimal adaptation value curve,with high localization accuracy,and can satisfy the realistic needs of fault operation and maintenance work in DG-containing distribution network.

Distributed generation(DG)deviceDistribution networkFault localizationHierarchical modelImproved immunity algorithm(IA)

欧宇航、陆萍

展开 >

中能国研(北京)电力科学研究院,北京 100055

衡阳市应急管理局,湖南 衡阳 421001

分布式发电装置 配电网 故障定位 分层模型 改进免疫算法

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(10)