首页|基于机器视觉的汽车碰撞预警图标识别方法研究

基于机器视觉的汽车碰撞预警图标识别方法研究

扫码查看
针对汽车碰撞预警测试数据处理耗时长的问题,创新性地将机器视觉应用于汽车碰撞预警系统测试的数据处理.碰撞预警系统测试分为测试阶段和离线数据处理阶段.在测试阶段构建了一种基于颜色直方图相似度局部最小值的方法,以提取关键帧.测试时,首先实时获取帧间颜色直方图相似度序列,然后利用汉宁窗对相似度序列进行平滑处理,最后根据平滑过的帧间相似度局部最小值获取关键帧.在数据处理阶段,人工挑选出一张包含预警图标的图像,并获取图标在图像中的位置.根据尺度不变特征变换特征提取和最快邻近区匹配对局部区域进行特征提取和匹配.试验结果证明,该方法能够实现对汽车碰撞预警图标的快速、有效识别,并输出包含时间信息的关键帧.该方法能提高碰撞预警系统测试数据处理效率、提升自动化程度.
Research on Recognition Method of Automobile Collision Warning Icons Based on Machine Vision
Aiming at the problem of time-consuming data processing of automobile collision warning test,machine vision is innovatively applied to the data processing of automobile collision warning system test.The collision warning system test is divided into a testing phase and an offline data processing phase.A method based on the local minimum of color histogram similarity is constructed in the testing phase to extract key frames.During the test,the inter-frame color histogram similarity sequence is firstly acquired in real time,then the similarity sequence is smoothed using the Hanning window,and finally the key frames are acquired based on the smoothed inter-frame similarity local minima.In the data processing stage,an image containing the warning icon is manually selected to obtain the position of the icon in the image.Feature extraction and matching are performed on the local region according to scale-invariant feature transformation feature extraction and fastest neighborhood matching.The test results prove that the method can realize fast and effective recognition of automobile collision warning icons and output key frames containing time information.The method can improve the efficiency of collision warning system test data processing and enhance the degree of automation.

Machine visionAutomobible collision warning testScale invariant feature transformColor histogramKey frame extractionColor spaceAutomobile instrument

孙静格、李忠利、陈广修、韩冲、汪俊

展开 >

河南科技大学车辆与交通工程学院,河南 洛阳 471003

河南科技大学应用工程学院,河南 三门峡 472000

机器视觉 汽车碰撞预警测试 尺度不变特征变换 颜色直方图 关键帧提取 色彩空间 汽车仪表

河南省高等学校重点科研基金资助项目

22B416001

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(10)