首页|变电站巡检机器人路径规划算法研究

变电站巡检机器人路径规划算法研究

扫码查看
针对复杂场景下变电站巡检机器人路径规划效率低的问题,提出一种路径规划算法.首先,改进启发函数并针对变电站实际路径中的复杂情况,建立基于环境参数的多目标评价函数.其次,通过动态路径优化技术,实现对路线模型的更新与筛选.最后,采用前馈路径优化策略,将障碍区域内路径节点转移到可行区域内进行优化,以提高可行路径的数量.试验结果表明,与传统蚁群算法相比,改进蚁群算法的最优路径长度和平均迭代次数分别减少了6%和25%,且算法收敛速度和精度明显提高.将改进算法应用于变电站巡检机器人复杂场景下的路径规划,解决了机器人寻优过程中路径优化和风险性避障问题.根据变电站巡检机器人的实际工作环境,用栅格法建立环境模型,证明了改进算法的可行性.
Research on Path Planning Algorithm for Substation Inspection Robot
Aiming at the problem of low efficiency of path planning of substation inspection robot in complex scenes,a path planning algorithm is proposed.Firstly,the heuristic function is improved and a multi-objective evaluation function based on environmental parameters is established for the complex situation in the actual path of substation.Secondly,the updating and screening of the route model is realized by the dynamic path optimization technique.Finally,the feed-forward path optimization strategy is adopted to transfer the path nodes in the obstacle area to the feasible area for optimization,so as to improve the number of feasible paths.The experimental results show that compared with the traditional ant colony algorithm,the optimal path length and the average number of iterations of the improved ant colony algorithm are reduced by 6%and 25%respectively,and the convergence speed and accuracy of the algorithm are significantly improved.The improved algorithm is applied to the path planning of substation inspection robot in complex scenarios,which solves the problems of path optimization and risky obstacle avoidance in the robot's optimization search process.According to the actual working environment of the substation inspection robot,the environment model is established by the raster method,which proves the feasibility of the improved algorithm.

SubstationInspection robotAnt colony algorithm(ACA)Path planningDynamic pathHeuristic factor

曹恩勇、王首彬、彭桂力、周远、刘启超

展开 >

青岛工学院机电工程学院,山东 青岛 266300

天津城建大学控制与机械工程学院,天津 300384

哈尔滨工业大学仪器科学与工程学院,黑龙江 哈尔滨 150000

变电站 巡检机器人 蚁群算法 路径规划 动态路径 启发因子

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(11)