首页|基于TCN-MKELM的工业控制系统故障预警方法研究

基于TCN-MKELM的工业控制系统故障预警方法研究

扫码查看
针对工业控制系统关键信号时序性的特点,提出了一种基于时间卷积网络-多核极限学习机(TCN-MKELM)的工业控制系统故障预警方法.首先,采用工业控制系统的历史运行数据,建立了基于时间卷积网络(TCN)的在线预测模型,对工业控制系统各关键信号进行在线预测,并生成残差数据.其次,构造多核极限学习机(MKELM),结合残差数据建立了基于MKELM的故障预警模型.最后,以某火电厂锅炉温度控制系统的运行数据为例进行了试验.试验结果表明:与传统循环神经网络相比,基于TCN的预测模型的预测误差较小;与采用原始故障数据直接进行故障预警的方法相比,基于残差数据的MKELM故障预警模型准确率更高.该方法可以有效发现工业生产控制系统的安全隐患,保障工业控制系统的安全运行.
Research on Fault Early Warning Method of Industrial Control System Based on TCN-MKELM
Aiming at the characteristics of the temporal nature of critical signals of industrial control system,a fault early warning method of industrial control system based on time convolution network-multi kernel extreme learning machine(TCN-MKELM)is proposed.Firstly,the historical operation data of industrial control system is used,an online prediction model based on time convolution network(TCN)is established to predict each critical signal of industrial control system online and generate residual data.Secondly,multi kernel extreme learning machine(MKELM)is constructed,and a fault early warning model based on MKELM is established by combining the residual data.Finally,the operation data of boiler temperature control system of a thermal power plant is taken as an example for experiment.The experimental results show that the prediction error of the TCN-based prediction model is smaller than that of the traditional recurrent neural network;the accuracy of the MKELM fault early warning model based on residual data is higher than that of the method that adopts the original fault data for direct fault early warning.The method can effectively discover the safety hazards of industrial production control system and guarantee the safe operation of industrial control systems.

Industrial control systemIndustrial control safetyFault early warningTime convolution network(TCN)Multi kernel extreme learning machine(MKELM)Temporal data

孙军、张哲宇、王诗蕊、王源涛、龚亮华

展开 >

国家工业信息安全发展研究中心,北京 100084

烽台科技(北京)有限公司,北京 100195

工业控制系统 工控安全 故障预警 时间卷积网络 多核极限学习机 时序数据

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(11)