首页|分布式光伏电网并网谐波电流抑制方法研究

分布式光伏电网并网谐波电流抑制方法研究

扫码查看
分布式光伏电网并网控制效果较差,严重影响光伏电网运行安全.为此,提出一种分布式光伏电网并网谐波电流抑制方法.构建分布式光伏电网并网逆变器数学模型,利用该模型获取配电网存在谐波时的电压与电流数据,并建立数据集.数据集划分为测试集和训练集后,输入到数据驱动算法中的径向基函数(RBF)神经网络内.通过RBF神经网络迭代,构建基于数据驱动算法的谐波源模型.利用该模型获得光伏电网并网谐波源.将光伏电网并网谐波源作为输入,使用谐波扰动补偿器和矢量比例积分跟踪控制器实现分布式光伏电网并网谐波电流抑制.试验结果表明,该方法可迅速、准确地跟踪电网并网时出现的谐波.该方法可有效抑制谐波电流畸变.
Research on Grid-Connected Harmonic Current Suppression Method for Distributed Photovoltaic Power Grid
Distributed photovoltaic grid-connected control for power grids is poor,which seriously affects the operational safety of photovoltaic power grid.For this reason,a distributed photovoltaic power grid grid-connected harmonic current suppression method is proposed.A mathematical model of distributed photovoltaic power grid grid-connected inverter is constructed,and the model is used to obtain the voltage and current data when harmonics exist in the distribution grid and establish a data set.The dataset is divided into test set and training set and then input into the radial basis function(RBF)neural network within the data-driven algorithm.The harmonic source model based on the data-driven algorithm is constructed by iterating the RBF neural network.The model is utilized to obtain the photovoltaic power grid grid-connected harmonic sources.Using the photovoltaic power grid grid-connected harmonic source as input,a harmonic disturbance compensator and a vector proportional integral tracking controller are used to realize distributed photovoltaic power grid grid-connected harmonic current suppression.The experimental results show that the method can quickly and accurately track the harmonics of power grid appearing during grid-connection.The method can effectively suppress the harmonic current distortion.

Data-drivenDistributedPhotovoltaic power gridGrid-connected harmonic currentsSuppression methodHarmonic disturbance compensatorRadial basis function(RBF)neural networkCurrent distortion

苏华堂、张小勇、陈丽娜、孙沛、王浩强

展开 >

国网甘肃省电力公司平凉供电公司,甘肃 平凉 744000

数据驱动 分布式 光伏电网 并网谐波电流 抑制方法 谐波扰动补偿器 径向基函数神经网络 电流畸变

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(11)