首页|基于双环自适应滑模控制的高速列车运行追踪

基于双环自适应滑模控制的高速列车运行追踪

扫码查看
针对列车高速运行跟踪控制问题,提出了 一种基于双环结构的RBF神经网络自适应滑模控制算法.首先系统结构分为位移与速度控制子系统,防止列车因单个控制器故障而失控;在此基础上采用积分滑模控制,加强控制器的鲁棒性;同时在速度子系统中引入参数自适应算法与RBF神经网络自适应算法削弱列车受到基本阻力、附加阻力以及不确定性阻力带来的影响;最后通过Lyapunov稳定性分析证明系统的稳定性.通过仿真实验结果表明,位移误差在[-3.3×10-4,1.9×10-4]范围以内,速度误差在[-2.1×10-2,3.1×10-2]范围以内,该算法可以实现对列车的速度与位移精确追踪.
High-speed Train Operation Tracking Based on Dual Closed-loop Adaptive Sliding Mode Control
An adaptive sliding mode control algorithm of RBF neural network based on double loop structure is pro-posed to solve the problem of high-speed train tracking control.Firstly,the system structure is divided into displace-ment and speed control subsystems to prevent the train from losing control due to the failure of a single controller.On this basis,integral sliding mode control is used to strengthen the robustness of the controller.At the same time,parameter adaptive algorithm and RBF neural network adaptive algorithm are introduced into the speed subsystem to reduce the impact of basic resistance,additional resistance and uncertain resistance.Finally,the stability of the system is proved by Lyapunov stability analysis.Through simulation experiments,the results show that the displacement error is within the[-3.3×10-4,1.9×10-4]range and the speed error is within the[-2.1×10-2,3.1×10-2]range,and the algo-rithm can accurately track the speed and displacement of the train.

high-speed trainsliding mode controldouble closed-loop control systemadaptive controlRBF neural net-work

冯庆胜、薛祥希、姜增鹏

展开 >

大连交通大学 自动化与电气工程学院,大连 116028

高速列车 积分滑模 双闭环控制系统 自适应控制 RBF神经网络

2019年辽宁省自然科学基金项目

2019-ZD-0094

2024

自动化与仪表
天津市工业自动化仪表研究所 天津市自动化学会

自动化与仪表

CSTPCD
影响因子:0.548
ISSN:1001-9944
年,卷(期):2024.39(3)
  • 11