首页|基于LSTM网络模型的光伏发电功率短期预测系统

基于LSTM网络模型的光伏发电功率短期预测系统

扫码查看
光伏发电受天气因素影响,具有明显的间歇性和波动性特征.该文提出了一种基于LSTM网络模型的光伏发电功率短期预测方法,该方法以STM32单片机为控制核心,实时采集光照辐度、温度、相对湿度、风速等数据.利用相关系数法筛选相关度较高的因素,作为LSTM网络模型的输入变量,对未来光伏发电功率进行短期预测.MATLAB仿真实验结果表明,该文所提方法与其他预测模型相比具有较高的预测精度,在晴天与多云天气下预测的MAPE值分别为4.943%和4.997%,有利于我国电力系统的稳定运行和电网工作人员的调度.
Short-term Power Prediction System for Photovoltaic Power Generation Based on LSTM Model
Photovoltaic power generation is affected by weather factors and has obvious intermittent and fluctuating characteristics.In this paper,a short-term prediction method of photovoltaic power generation based on LSTM network model is proposed,which uses STM32 microcontroller as the control core to collect data such as radiance,tempera-ture,relative humidity,and wind speed in real time.The correlation coefficient method is used to screen the factors with high correlation and use them as input variables of the LSTM network model to make short-term predictions of future photovoltaic power generation.The results of MATLAB simulation experiments show that the proposed method has high prediction accuracy compared with other prediction models,and the MAPE values predicted in sunny and cloudy weather are 4.943%and 4.997%respectively,which is conducive to the stable operation of China's power system and the dispatch of power grid staff.

STM32 MCUshort-term forecastingLSTM network modelreal-time collectionphotovoltaic power generation

常振成、游国栋、肖梓跃、李兴韫

展开 >

天津科技大学 电子信息与 自动化学院,天津 300222

STM32单片机 短时预测 LSTM网络模型 实时采集 光伏发电功率

天津市应用基础与前沿技术研究计划天津市重点研发计划大学生创新创业训练计划

13JCZDJC2910017YFZCNC00230202310057101

2024

自动化与仪表
天津市工业自动化仪表研究所 天津市自动化学会

自动化与仪表

CSTPCD
影响因子:0.548
ISSN:1001-9944
年,卷(期):2024.39(4)
  • 13