首页|基于深度学习算法的铁路无线通信干扰信号自动化识别系统

基于深度学习算法的铁路无线通信干扰信号自动化识别系统

扫码查看
针对铁路无线通信过程中,信号干扰杂乱且自动化识别精确度不高、类型判别较难的问题,该文提出基于深度学习算法的铁路无线通信干扰信号自动化识别系统.无线通信干扰信号自动化识别系统主要针对铁路无线通信过程中面临的噪声调幅、射频噪声以及噪声调频等干扰信号问题.系统通过改进天牛须算法进行BP神经网络的优化,将域矩偏度以及域矩峰度作为特征参数进行自动化识别判定.经过实验验证,该文设计的干扰信号自动化识别系统快速准确,自动化识别精度高.
Automatic Identification System for Railway Wireless Communication Interfer-ence Signals Based on Deep Learning Algorithms
A railway wireless communication interference signal automatic recognition system based on deep learning algorithm is proposed to address the problems of chaotic signal interference,low accuracy of automatic recognition,and difficulty in type discrimination in the process of railway wireless communication.The automatic identification system for wireless communication interference signals mainly targets the interference signal problems faced by railway wireless communication processes,such as noise amplitude modulation,radio frequency noise,and noise frequency modulation.The system optimizes the BP neural network by improving the beetle antennae algorithm,using domain moment skewness and domain moment kurtosis as feature parameters for automated recognition and judgment.After actual experimental verification,the interference signal automatic recognition system designed in this article is faster and more accurate,and the automation recognition accuracy is higher.

beetle antennae algorithmBP neural networkdomain moment skewnessdomain moment kurtosisrailway communication interference

任国彬

展开 >

陕西交通职业技术学院 轨道交通学院,西安 710018

天牛须算法 BP神经网络 域矩偏度 域矩峰度 铁路通信干扰

陕西省教育厅2021年专项课题陕西交通职业技术学院校级科研项目

21JK0528YJ21002

2024

自动化与仪表
天津市工业自动化仪表研究所 天津市自动化学会

自动化与仪表

CSTPCD
影响因子:0.548
ISSN:1001-9944
年,卷(期):2024.39(5)
  • 10