首页|基于改进人工蜂群算法的受电弓LQR控制器设计

基于改进人工蜂群算法的受电弓LQR控制器设计

扫码查看
针对受电弓LQR控制策略中性能指标的权重系数依靠人工经验选取不足的问题,建立SS400型受电弓三元质量模型,设计受电弓LQR控制器,以接触力标准差和弓头位移标准差之比为评价指标建立目标函数,由于标准人工蜂群算法存在的收敛速度慢、易陷入局部最优的缺点,通过改进蜂群算法的选择策略和搜索方式对LQR控制器的权重系数进行优化.在MATLAB/Simulink环境中建立弓网耦合模型分别在250 km/h、300 km/h的速度下进行仿真,通过与被动控制和标准蜂群算法寻优的结果对比,改进后弓网接触力标准差与弓头位移标准差分别优化了52.8%、37.5%、27.8%、31.8%、40.5%、43.1%、9.3%、7%,显著改善受电弓受流质量.
Design of Pantograph LQR Controller Based on Improved Artificial Bee Colony Algorithm
To address the issue of insufficient manual selection of weight coefficients for performance indicators in the LQR control strategy of pantographs,a three-element mass model of SS400 pantographs is established,and an LQR controller for pantographs is designed.The objective function is established based on the ratio of contact force stan-dard deviation to bow head displacement standard deviation as the evaluation index.Due to the slow convergence speed and tendency to fall into local optima of the standard artificial bee colony algorithm,optimize the weight coef-ficients of the LQR controller by improving the selection strategy and search method of the bee colony algorithm.Establishing a bow net coupling model in MATLAB/Simulink environment for simulation at speeds of 250 km/h and 300 km/h respectively.By comparing the results with passive control and standard bee colony algorithm optimization,the improved bow net performance indicators were optimized by 52.8%,37.5%,27.8%,31.8%,40.5%,43.1%,9.3%,7%,significantly improved the quality of pantograph current collection.

pantographcontact networkLQRartificial bee colony algorithm

冯庆胜、姜增鹏、薛祥希、刘雨奇

展开 >

大连交通大学 自动化与电气工程学院,大连 116028

受电弓 接触网 LQR 人工蜂群算法

2019年辽宁省自然科学基金项目

2019-ZD-0094

2024

自动化与仪表
天津市工业自动化仪表研究所 天津市自动化学会

自动化与仪表

CSTPCD
影响因子:0.548
ISSN:1001-9944
年,卷(期):2024.39(7)
  • 3