首页|基于深度学习的风力发电系统自动化优化与控制系统

基于深度学习的风力发电系统自动化优化与控制系统

扫码查看
为解决因风速波动导致的风力发电系统不稳定性问题,设计基于深度学习的风力发电系统自动化优化与控制系统.采集风力发电系统运行时温度、转速等信号,利用深度学习算法优化增量PID控制算法参数,增量PID控制算法得到自动化优化控制量,并通过优化控制量,控制风力发电系统的风轮位置、桨矩角与电机转速;通过远程监控模块呈现自动化优化控制过程.实验证明,该系统可有效采集风力发电系统的运行参数,并优化增量PID控制算法参数,完成风力发电系统自动化优化控制,提升风力发电系统的稳定性.
Automation Optimization and Control System of Wind Power Generation Sys-tem Based on Deep Learning
To address the instability of wind power generation systems caused by wind speed fluctuations,a deep learning based automation optimization and control system for wind power generation is designed.Collect temperature,speed and other signals during the operation of the wind power generation system,use deep learning algorithms to op-timize the parameters of the incremental PID control algorithm.The incremental PID control algorithm obtains an au-tomated optimization control quantity,and through the optimization control quantity,controls the position of the wind turbine,pitch angle,and motor speed of the wind power generation system.Presenting automated optimization control processes through remote monitoring modules.Experimental results have shown that the system can effectively collect operational parameters of wind power generation systems,optimize incremental PID control algorithm parameters,com-plete automation optimization control of wind power generation systems,and improve the stability of wind power gen-eration systems.

deep learningwind power generation systemautomationoptimization and controlsensorsincremental PID control algorithm

佟忠正、孙旸子

展开 >

南方电网数字电网集团有限公司,广州 510000

南方电网电力科技股份有限公司,广州 510080

深度学习 风力发电系统 自动化 优化与控制 传感器 增量PID控制算法

2024

自动化与仪表
天津市工业自动化仪表研究所 天津市自动化学会

自动化与仪表

CSTPCD
影响因子:0.548
ISSN:1001-9944
年,卷(期):2024.39(8)