首页|电网动态行为约束下电力状态数据异常检测研究

电网动态行为约束下电力状态数据异常检测研究

扫码查看
目前常规的电力状态异常数据检测方法存在检测精度不佳的问题.为了解决这个问题,提出了一种基于电网动态行为约束的电力状态数据异常检测方法.该方法首先分析电网动态行为约束条件,并将源荷数据和运行数据作为提取目标;然后使用插值法对获取到的原始数据进行缺失值填充处理,以确保数据的完整性;接下来,采用灰色关联分析方法对数据之间的关联程度进行分析,以提取关键参量数据;同时,选定聚类中心,并通过判定新输入数据到聚类中心的距离是否高于异常阈值来识别出异常数据.实验结果表明,采用这种方法进行电力数据异常检测时,具备较为理想的检测精度.
Study on Power State Data Anomaly Detection Under Grid Dynamic Behavioral Constraints
At present,conventional methods for detecting abnormal power state data have the problem of poor detec-tion accuracy.To address this issue,researchers have proposed a power state data anomaly detection method based on dynamic behavior constraints of the power grid.This method first analyzes the dynamic behavior constraints of the power grid,and takes source load data and operational data as extraction targets.Then,interpolation method is used to fill in the missing values of the obtained raw data to ensure the integrity of the data.Next,the grey correlation analysis method is used to analyze the degree of correlation between data to extract key parameter data.At the same time,select the cluster center and identify abnormal data by determining whether the distance from the new input da-ta to the cluster center is higher than the anomaly threshold.The experimental results show that when using this method for anomaly detection in power data,the AUC value of the algorithm is low,and it has relatively ideal detec-tion accuracy.

power systemsoperational dataanomaly detectionclustering algorithms

顾冰凌、田琳、陈博、杨静

展开 >

国网思极飞天(兰州)云数科技有限公司,兰州 730050

西安交通大学 电子与信息学部,西安 710048

电力系统 运行数据 异常检测 聚类算法

2024

自动化与仪表
天津市工业自动化仪表研究所 天津市自动化学会

自动化与仪表

CSTPCD
影响因子:0.548
ISSN:1001-9944
年,卷(期):2024.39(9)