首页|基于BO-LSTM的海洋浅层钻井机械钻速预测方法

基于BO-LSTM的海洋浅层钻井机械钻速预测方法

扫码查看
机械钻速是衡量钻井效率的最重要指标,而机械钻速预测可以帮助钻井工程更加有效地对钻井过程进行优化,然而机械钻速受地质特性、钻柱组合、钻井液性能、钻井参数等多因素影响,难以准确预测.该文以渤中某区块的钻井实测数据为基础,提出一种基于贝叶斯优化算法优化长短时间记忆神经网络的机械钻速预测模型,并与标准的LSTM神经网络预测模型和灰狼优化算法优化LSTM神经网络的预测模型作对比分析.选取了渤中区块的3口井进行实验,评级模型的适应性.结果表明,贝叶斯优化LSTM机械钻速预测模型相对于另外两种模型,具有更良好的预测精度.
Prediction Method for the Drilling Speed of Marine Shallow Seismic Drill Rig Based on BO-LSTM
Mechanical drilling rate is the most important indicator for measuring drilling efficiency,and mechanical drilling rate prediction can help optimize the drilling process more effectively.However,the prediction of mechanical drilling rate is difficult due to various factors such as geological characteristics,drill string composition,drilling fluid performance,and drilling parameters.In this paper,based on the actual drilling data of a block in the Bohai Sea,a mechanical drilling rate prediction model based on the Bayesian optimization algorithm is proposed to optimize the long short-term memory(LSTM)neural network.The model is compared and analyzed with the standard LSTM neural network prediction model and the LSTM neural network prediction model optimized by the grey wolf optimization al-gorithm.Three wells in the Bohai Sea block were selected for the experimental evaluation of the model.The results show that the Bayesian optimization LSTM mechanical drilling rate prediction model has better prediction accuracy compared to the other two models.

mechanical drilling speeddrilling speed predictionBayesian optimizationLSTM neural network

宋宇、彭福康、孟卓然、曹博

展开 >

中国石油大学(北京)人工智能学院,北京 102249

机械钻速 钻速预测 贝叶斯优化 LSTM神经网络

国家自然科学青年基金项目国家重点研发计划项目

522040172022YFC2806100

2024

自动化与仪表
天津市工业自动化仪表研究所 天津市自动化学会

自动化与仪表

CSTPCD
影响因子:0.548
ISSN:1001-9944
年,卷(期):2024.39(10)