首页|基于RBF神经网络优化光伏储能并网自适应控制的方法研究

基于RBF神经网络优化光伏储能并网自适应控制的方法研究

扫码查看
常规的光伏储能并网自适应控制,主要采用电压动态调节实现,忽略了并网电流波形偏差对控制结果造成的影响,导致控制结果超调量较大.因此,提出基于RBF神经网络优化光伏储能并网自适应控制的方法.根据光伏储能并网的等效电路分析输出特性,建立基于RBF神经网络的等效电路连接架构,辨识储能作用方式,基于辨识分类结果计算并网电流的谐波补偿值,分析补偿后的内环电流,引入能量需求参数对并网输出功率控制策略进行自适应优化.实验结果表明,所提方法应用后得出的控制结果,表现出的超调量较低,仅为1.8%,控制效果较优,满足了光伏储能并网的现实应用需求.
Research on the Method of Optimizing Adaptive Control for Grid Connection of Photovoltaic Energy Storage Based on RBF Neural Network
Conventional photovoltaic energy storage grid connected adaptive control mainly adopts voltage dynamic ad-justment to achieve adaptive control,ignoring the impact of grid connected current waveform deviation on the control results,resulting in a large overshoot of the control results.Therefore,a method for optimizing adaptive control of photovoltaic energy storage grid connection based on RBF neural network is proposed.Based on the analysis of the output characteristics of the equivalent circuit for photovoltaic energy storage and grid connection,an equivalent cir-cuit connection architecture based on RBF neural network is established.The energy storage action mode is identi-fied,and the harmonic compensation value of the grid connection current is calculated based on the identification classification results.The compensated inner loop current is analyzed,and energy demand parameters are introduced to adaptively optimize the grid connection output power control strategy.The experimental results show that the con-trol results obtained after the application of the proposed method exhibit a low overshoot,only 1.8%,and the control effect is excellent,meeting the practical application requirements of photovoltaic energy storage and grid connection.

photovoltaic energy storage and grid connectionRBF neural networkadaptive controloptimize controlcontrol methodsgrid connection control

李兴龙、梁俊宇、张贵鹏、龚新勇

展开 >

云南电网有限责任公司昆明宜良供电局,昆明 652199

云南电网有限责任公司电力科学研究院,昆明 650217

云南电网有限责任公司生产技术部,昆明 650032

云南电网有限责任公司昆明供电局,昆明 650106

展开 >

光伏储能并网 RBF神经网络 自适应控制 优化控制 控制方法 并网控制

云南省重点研发计划项目中国南方电网有限责任公司创新项目

202302AF080006YNKJXM20222360

2024

自动化与仪表
天津市工业自动化仪表研究所 天津市自动化学会

自动化与仪表

CSTPCD
影响因子:0.548
ISSN:1001-9944
年,卷(期):2024.39(10)