首页|基于广义回归神经网络的风力发电场设备温度自适应预测方法

基于广义回归神经网络的风力发电场设备温度自适应预测方法

扫码查看
传统预测方法很难有效处理风力发电场设备温度各种影响因素之间的非线性关系,从而导致预测结果的不准确.针对上述问题,研究一种基于广义回归神经网络的风力发电场设备温度自适应预测方法.分析风力发电场设备温度影响因素并收集这些因素对应的数据,组成样本,对样本实施离群值处理和归一化处理.利用广义回归神经网络自适应预测设备温度并利用鸽群优化算法(PIO算法)自适应调整广义回归神经网络预测模型参数——平滑因子σ,提高其自适应能力.结果表明,所研究方法的预测偏度最高误差仅为0.3℃,说明该方法在预测温度时具有良好的准确性,预测值接近实际值.
Adaptive Temperature Prediction Method for Wind Farm Equipment Based on Generalized Regression Neural Network
Traditional prediction methods are difficult to effectively handle the nonlinear relationship between various influencing factors of wind farm equipment temperature,resulting in inaccurate prediction results.To address the above issues,a temperature adaptive prediction method for wind farm equipment based on generalized regression neu-ral network is studied.Analyze the factors affecting the temperature of wind farm equipment and collect data corre-sponding to these factors to form a sample,and perform outlier and normalization processing on the sample.Using PIO algorithm to adaptively adjust the parameters of the generalized regression neural network prediction model-smoothing factor σ,improve its adaptive ability.The results indicate that the prediction bias of the studied method is small,the maximum error is only 0.3℃,indicating that the method has higher accuracy in predicting temperature and the predicted values are closer to the actual values.

generalized regression neural networkwind power plantsequipment temperaturePIO algorithmadaptive prediction method

张二辉、徐兴朝、郑卫剑、贾政

展开 >

河北新天科创新能源技术有限公司,张家口 075000

广义回归神经网络 风力发电场 设备温度 PIO算法 自适应预测方法

2024

自动化与仪表
天津市工业自动化仪表研究所 天津市自动化学会

自动化与仪表

CSTPCD
影响因子:0.548
ISSN:1001-9944
年,卷(期):2024.39(10)
  • 14