首页|基于堆叠去噪自编码器的滚动轴承寿命预测

基于堆叠去噪自编码器的滚动轴承寿命预测

扫码查看
传统的滚动轴承剩余寿命预测建模方法需要具有丰富经验的专家挑选合适的单一或混合指标亦或模型来提取有效的特化特征曲线,随后采用合适的预测模型进行寿命预测.为解决滚动轴承寿命预测建模专家经验依赖性复杂问题,该文提出了 一种基于堆叠去噪自编码器(SDAE)深度学习的滚动轴承寿命预测方法.该方法首先将原始数据经过傅立叶变换,然后计算多个时频与指标,其次直接作为堆叠去噪自编码器的输入,最后进行寿命预测.实验结果表明,该文提出的模型预测精准度整体上优于SAE、ELM与LSTM模型.
Method Based on Stacking Denoising Auto-encoder for Rolle Bearing Remaining Useful Life Predtction
The traditional rolling bearings remaining useful life prediction modeling method requires experts with rich experience to select availableindicators or models to extract effective degradation feature curves,then use appropriate prediction models for remaining useful life prediction.To solve the problem of complicated experts dependence on the experience of rolling bearing remaining useful life prediction.This paper proposes a rolling bearing remaining useful life prediction method based on SDAE(stacking denoising auto-encoder)deep learning model.This method first transforms the original data through Fourier,and then calculates multiple times and indicators.Secondly,it is directly used as the input of the SDAE,the life forecast is finally performed.the experimental results shows that the preditc-tion accuracy of our proposed method is better than SAE(stacking auto-encoder)neural network,ELM(extreme learn-ing machine),and LSTM(long short and time memory)neural network models as a whole.

roll bearingstacking denoising auto-encoder(SDAE)deep learningremaining useful life prediction

唐逸丰、许凡、徐东亮

展开 >

武汉理工大学机电工程学院,武汉 430070

滚动轴承 堆叠去噪自编码器 深度学习 剩余寿命预测

国家自然科学青年基金资助项目

52205168

2024

自动化与仪表
天津市工业自动化仪表研究所 天津市自动化学会

自动化与仪表

CSTPCD
影响因子:0.548
ISSN:1001-9944
年,卷(期):2024.39(10)
  • 4