首页|基于GALNS的车辆与无人机协同运输路径规划

基于GALNS的车辆与无人机协同运输路径规划

扫码查看
地震灾害下,道路发生损毁,影响应急救援物资的紧急运输.该文在发生道路中断的背景下,以总成本最小化为目标建立了卡车和无人机协同运输模型,设计了一种基于遗传算法和自适应邻域搜索算法的自适应变邻域遗传算法(GALNS)求解.在算例中进行仿真研究,与GA、PSO、ALNS算法进行对比,GALNS算法求解得到的车辆行驶距离相较于其他3种算法可分别减少24.1%、20.32%、11.63%;总时间相较于其他3种算法可分别减少38.9%、31.43%、20.37%;总成本相较于其他3种算法可分别减少36.07%、28.4%、18.7%;收敛速度和结果均优于其他3种算法.结果表明,GALNS算法可有效减少成本、更加合理的规划路径和节省时间.该研究成果可为地震或其他自然灾害情况下应急救援物资的高效运输提供指导和参考.
Vehicle and Drone Collaborative Transportation Route Planning Based on GALNS
In the aftermath of earthquakes,road damage hampers the urgent transportation of emergency supplies.This paper aims to minimize total costs by establishing a collaborative truck and drone transport model for disrupted roads.An adaptive variable neighborhood genetic algorithm(GALNS)is designed,integrating genetic and adaptive large neighborhood search algorithms.Simulations comparing GALNS with GA,PSO,and ALNS show that GALNS re-duces vehicle travel distance by 24.1%,20.32%,and 11.63%.Total time by 38.9%,31.43%,and 20.37%.And total cost by 36.07%,28.4%,and 18.7%,respectively.GALNS outperforms others in convergence speed and results,provid-ing effective cost reduction,better route planning,and time savings for disaster relief transportation.The findings offer guidance for efficient transport of emergency supplies during earthquakes or other natural disasters.

collaborative transportationroute planninggenetic algorithmadaptive large neighborhood search algorithm

宋百玲、牟俊麒、李星禹

展开 >

东北林业大学机电工程学院,哈尔滨 150040

协同运输 路径规划 遗传算法 自适应大邻域搜索算法

2024

自动化与仪表
天津市工业自动化仪表研究所 天津市自动化学会

自动化与仪表

CSTPCD
影响因子:0.548
ISSN:1001-9944
年,卷(期):2024.39(12)