首页|基于CNN-LSTM的实时空降空投状态识别系统设计

基于CNN-LSTM的实时空降空投状态识别系统设计

扫码查看
在空降空投的许多应用场景中,需要装置自动识别状态并及时做出相应反应.然而,传统方法的性能可能存在限制,难以灵活地应对各种情况.为了解决这一问题,该文提出了一种基于卷积神经网络和长短期记忆网络结合(CNN-LSTM)的神经网络模型,并且将其部署于RV1106芯片,从而搭建实时空降空投状态识别系统.首先,采集空降空投过程的原始数据以及MATLAB仿真数据作为训练样本;然后,通过改进的CNN-LSTM算法训练出网络模型;最后,将网络模型部署到终端系统.通过多维度特征融合,该算法能够更精确地确定当前状态.实验结果表明,该文提出的方法比单独的LSTM算法识别率提高了 3.1%,实用率提高61%,能够满足飞行与伞降状态识别的需求.
Design of Real-time Airborne Airdrop State Recognition System Based on CNN-LSTM
In many application scenarios of airborne airdrops,devices are required to automatically recognize the status and react accordingly in a timely manner.However,there may be limitations in the performance of traditional meth-ods that make it difficult to respond flexibly to various situations.To solve this problem,this paper proposes a neural network model based on the combination of convolutional neural network and long short-term memory network(CNN-LSTM)and deploys it on the RV1106 chip to build a real-time airborne airdrop state recognition system.First,the raw data of airborne drop process and MATLAB simulation data are collected as training samples,then the network model is trained by the improved CNN-LSTM algorithm,and finally the network model is deployed to the terminal sys-tem.Through multi-dimensional feature fusion,this algorithm can determine the current state more accurately.The ex-perimental results show that the method proposed in this paper improves the recognition rate by 3.1%and the utility rate by 61%over the LSTM algorithm alone,which can meet the requirements of flight and parachute state recognition.

LSTMreal-timemultidimensional feature fusionRV1106 chipAI model deployment

汤鸿源、王利恒、张海龙、康超

展开 >

武汉工程大学 电气信息学院,武汉 430205

中国船舶集团有限公司第七二二所,武汉 430205

LSTM 实时 多维度特征融合 RV1106芯片 AI模型部署

2024

自动化与仪表
天津市工业自动化仪表研究所 天津市自动化学会

自动化与仪表

CSTPCD
影响因子:0.548
ISSN:1001-9944
年,卷(期):2024.39(12)