首页|基于膜计算粒子群算法的巡检机器人运动控制

基于膜计算粒子群算法的巡检机器人运动控制

扫码查看
针对矿用巡检机器人在工作过程中效率低、稳定难的问题,该文设计了一种基于膜计算优化粒子群算法的PID控制方法.首先,根据矿区路面不平整及机器人自身特点,建立其运动模型;然后,采用单层膜结构模型对粒子群算法进行优化设计,得到膜计算优化粒子群算法(MC-PSO),将PID的3个控制参数编码成MC-PS O算法优化的对象,经过换位、交流、交叉和改写这4个规则处理后得到理想的优化值,并将其应用到矿用巡检机器人控制中;最后,进行了仿真实验,并与传统PID、模糊PID(Fuzzy-PID)相比较,实验数据表明,在系统平均误差方面分别减少了 0.23 m和0.16 m,在系统调节时间方面分别减少了 4.6 s和3.08 s,同时系统抗干扰能力较好,验证了该算法在提升系统响应速度、控制精度及鲁棒性方面有较好的效果.
Motion Control of Inspection Robot Based on Membrane Calculation Particle Swarm Algorithm
In response to the problem of low efficiency and difficult stability of mining inspection robots in the working process.A PID parameter self-tuning controller based on membrane computing optimization particle swarm optimization algorithm was designed.Firstly,according to the uneven road surface in the mining area and the characteristics of the robot itself,its motion model was established.Second,a single-layer membrane structure model is used to optimize the particle swarm optimization design,resulting in the membrane computing optimization particle swarm optimization(MC-PSO)algorithm.The three control parameters of PID are encoded as the objects optimized by the MC-PSO algorithm,obtaining ideal optimal values through empathy,communication,cross and rewrite.Finally,simulation experiments were conducted and compared with traditional PID and Fuzzy PID.The experimental data showed that the average system error was reduced by 0.23 m and 0.16m,and the system adjustment time was reduced by 4.6 s and 3.08 s,which veri-fied that this algorithm has good effects in improving system response speed,control accuracy,and robustness.

inspection robotmembrane computingparticle swarm optimization algorithmPID

姚江云、王宽田

展开 >

柳州工学院信息科学与工程学院,柳州 545616

桂林电子科技大学海洋工程学院,北海 536000

巡检机器人 膜计算 粒子群算法 PID

2024

自动化与仪表
天津市工业自动化仪表研究所 天津市自动化学会

自动化与仪表

CSTPCD
影响因子:0.548
ISSN:1001-9944
年,卷(期):2024.39(12)