首页|基于多源时序特征融合的负荷设备智能告警方法

基于多源时序特征融合的负荷设备智能告警方法

扫码查看
电力负荷设备状态监测是智能电网正常运行的重要保障,但密集部署状态下设备清晰度低且难以实时预警.对此该文提出一种基于多源时序特征融合的负荷设备智能告警方法.基于设备监测图像与包含时序特征的多源语义信息,通过深度学习引导视觉特征重建,进而实现对电力负荷设备的故障等级划分.通过实验仿真表明,该方法对故障类型的判断准确率可达93.6%,能够充分证明其在负荷设备告警与电网运维方面的有效性..
Intelligent Alarm Method for Load Equipment Based on Multi-source Time Series Feature Fusion
Monitoring the status of power load equipment is crucial for the normal operation of the smart grid,howev-er,the clarity of the equipment is often low,making real-time warning challenging,especially in densely deployed states.We proposed an intelligent alarm method for load equipment based on multi-source time series feature fusion(IAM-MTSF).Utilizing equipment monitoring images and multi-source semantic information with temporal features,vi-sual feature reconstruction is guided by deep learning to classify faults in power load equipment.Experimental simu-lations demonstrate that the proposed method can achieve an accuracy of 93.6%in determining fault types,thereby proving its effectiveness in load equipment alarms and grid operation and maintenance.

smart gridimage segmentationstate assessmentdeep learningedge feature fusion

李玮、王志伟、段俊祥

展开 >

国家电网有限公司客户服务中心,天津 300309

智慧电网 图像分割 状态评估 深度学习 边缘特征融合

2024

自动化与仪表
天津市工业自动化仪表研究所 天津市自动化学会

自动化与仪表

CSTPCD
影响因子:0.548
ISSN:1001-9944
年,卷(期):2024.39(12)