首页|改进的EEMD算法及其应用研究

改进的EEMD算法及其应用研究

扫码查看
总体平均经验模态分解(Ensemble EMD,EEMD)虽然能够在一定程度上抑制模态混淆,但计算量较大,添加的白噪声不能被完全中和,不具有完备性.补充的EEMD(Complementary EEMD,CEEMD)成对地添加符号相反的白噪声到目标信号,大大减小了重构误差.结合CEEMD和基于排列熵的信号随机性检测,提出了改进的EEMD方法(Modified EEMD,MEEMD),MEEMD方法在检测出CEEMD分解的异常分量之后,直接进行EMD分解;MEEMD不仅能够抑制EMD分解过程中的模态混淆,而且减小了计算量,缩小了重构误差.通过分析仿真信号和实测信号,结果表明,MEEMD方法有很好的分解效果,对模态混淆有一定的抑制作用.
Modified EEMD algorithm and its applications
Ensemble empirical mode decomposition (EEMD) can restrain mode mixing of EMD at a certain level,however,the calculation amount grows and the completeness loses due to the white noise unneutralized completely.Using complementary EEMD (CEEMD) adds the white noises in pairs into a target signal,the same results as those using EEMD can be obtained but the white noises added are neutralized completely.Here,based on CEEMD and permutation entropy for signal randomness detection,a modified EEMD (MEEMD) was proposed.With MEEMD,the data were decomposed using EMD after the abnormal components were separated using the ensemble and average method.It could not only restrain mode mixing effectively,but also decrease the reconstruction error and the computation amount.By analyzing simulation and actual signals,the results indicated that MEEMD is feasible and effective for restraining mode mixing of EMD.

EMDmode mixingCEEMDpermutation entropyMEEMD

郑近德、程军圣、杨宇

展开 >

湖南大学汽车车身先进设计制造国家重点实验室,长沙410082

EMD 模式混淆 CEEMD 排列熵 MEEMD

国家自然科学基金湖南省自然科学基金

5107513111JJ2026

2013

振动与冲击
中国振动工程学会 上海交通大学 上海市振动工程学会

振动与冲击

CSTPCDCSCD北大核心EI
影响因子:0.898
ISSN:1000-3835
年,卷(期):2013.32(21)
  • 189
  • 1