首页|基于神经网络的海冰弯曲强度计算参数确定及锥体破冰数值研究

基于神经网络的海冰弯曲强度计算参数确定及锥体破冰数值研究

扫码查看
为构建黏聚单元物理参数与海冰弯曲强度之间的关系,提出一种基于神经网络的回归模型用于海冰弯曲强度计算参数的确定。首先,基于有限元法及黏聚单元法对海冰三点弯曲试验进行数值模拟并验证方法的有效性。然后,选择五个影响参数,采用拉丁超立方抽样算法生成427个样本,通过数值模拟得到其对应的海冰弯曲强度,构建神经网络的数据集。在此基础上,采用多层感知器神经网络对所有样本预报结果进行训练,得到预报海冰弯曲强度的回归模型。以此建立与试验海冰弯曲强度相近的层冰数值模型,并考虑流体浮力和拖曳力对碎冰的作用,对不同参数影响下的锥体层冰相互作用进行数值模拟及分析。结果显示,锥体受到层冰纵向力的均值、标准差以及峰值均随碰撞速度、锥体水线面直径和锥体角度的增加而增大。
Determination of sea ice bending strength calculation parameters based on neural network and numerical study on ice-breaking with a cone
Here,to establish relations between physical parameters of cohesive element and bending strength of sea ice,a neural network-based regression model was proposed for determining calculation parameters of sea ice bending strength.Firstly,numerical simulation was performed for 3-point bending tests of sea ice based on finite element method and cohesive element method,and the effectiveness of methods was verified.Then,5 affecting parameters were selected,and Latin hypercube sampling algorithm was used to generate 427 samples.The corresponding sea ice bending strength was obtained with numerical simulation to construct the dataset of neural network.Furthermore,a multi-layer perceptron neural network was used to train all samples'prediction results,and obtain a regression model for predicting sea ice bending strength.Consequently,a numerical model of layer ice with bending strength similar to that of sea-ice tests was constructed.Considering effects of fluid buoyancy and drag on ice fragmentation,numerical simulation and analyses were performed for cone-layer ice interaction under different parameters.The results showed that standard deviation and peak values of layer ice longitudinal force exerted on cone increase with increase in collision velocity,cone waterline plane diameter and cone angle.

finite element methodcohesive element methodsea ice bending strengthneural networkstructure-ice layer interaction

朱圣涛、邹璐、邹早建、邹明

展开 >

上海交通大学船舶海洋与建筑工程学院,上海 200240

上海交通大学海洋工程全国重点实验室,上海 200240

有限元法 黏聚单元法 海冰弯曲强度 神经网络 结构物-层冰相互作用

2025

振动与冲击
中国振动工程学会 上海交通大学 上海市振动工程学会

振动与冲击

北大核心
影响因子:0.898
ISSN:1000-3835
年,卷(期):2025.44(1)