首页|基于声学黑洞的声学迷宫结构的优化设计

基于声学黑洞的声学迷宫结构的优化设计

扫码查看
结合理论计算、有限元仿真和试验测量,研究了基于声学黑洞的声学迷宫结构的优化设计方法,给出了具有5。01和7。75个倍频程的小尺寸、宽频吸声结构。首先,基于传递矩阵法,建立声学黑洞的数学模型,计算声学黑洞的反射系数,并将理论计算结果与有限元仿真结果进行对比。然后,基于声学黑洞的导纳变化规律,设计单、双旁支管声学迷宫结构,通过优化设计,实现迷宫结构和声学黑洞导纳的匹配。最后,基于声学迷宫结构导纳的匹配结果,应用模拟退火算法构造优化模型,获得了宽频吸声的小尺寸声学迷宫结构,并打印3D样件进行试验验证。研究结果表明:应用双旁支管声学迷宫代替声学黑洞管道中的环腔,经优化设计,旁支管迷宫和声学黑洞的导纳可以实现完美匹配,并可以在保持吸声性能不变的前提下,实现结构的小尺寸设计,优化后的结构有效吸声带宽是优化前的13。36倍,倍频程是优化前的3。64 倍。
Optimization design of acoustic labyrinth structure based on acoustic black hole
Here,by combining theoretical calculation,finite element simulation and experimental measurement,an optimization design method for acoustic labyrinth structure based on acoustic black hole was studied,and a small-size,broadband sound absorbing structure with 5.01 and 7.75 octave bands was given.Firstly,based on the transfer matrix method,the mathematical model of acoustic black hole was established,and the reflection coefficient of acoustic black hole was calculated.The theoretical calculation results were compared with the finite element simulation results.Then,based on admittance variation law of acoustic black hole,single side branch tube and double-side branch tube acoustic labyrinth structures were designed,and through optimized design,matching of labyrinth structure and acoustic black hole admittance was realized.Finally,based on matching results of acoustic labyrinth structure admittance,the simulated annealing algorithm was used to construct the optimized model,and obtain a small-sized acoustic labyrinth structure with broadband sound absorption.3D samples were printed for experimental verification.The study results showed that a double-side branch tube acoustic labyrinth is used to replace annular cavity in acoustic black hole pipeline,side branch tube acoustic labyrinth's admittance and acoustic black hole admittance can realize perfect matching with optimized design,small-sized structural design can be realized under the premise of keeping sound absorption performance unchanged;the effective sound absorption bandwidth of the optimized structure is 13.36 times that of before optimization,and the octave band is 3.64 times that of before optimization.

acoustic black holeacoustic labyrinth structuretransfer matrixfinite elementexperimental measurementreflection coefficient

程祎博、王晓明、梅玉林

展开 >

大连理工大学 机械工程学院,辽宁 大连 116024

声学黑洞 声学迷宫 传递矩阵 有限元 试验测量 反射系数

2025

振动与冲击
中国振动工程学会 上海交通大学 上海市振动工程学会

振动与冲击

北大核心
影响因子:0.898
ISSN:1000-3835
年,卷(期):2025.44(1)