首页|基于改进YOLOv5的小目标烟雾检测算法

基于改进YOLOv5的小目标烟雾检测算法

扫码查看
为解决火灾中的小目标烟雾检测精度不高的问题,提出一种基于改进YOLOv5的小目标烟雾检测算法.首先,将特征融合注意力(FFA)模块引入至主干网络中,使模型专注于小目标烟雾特征信息的提取;其次,通过采用多尺度金字塔解耦头(MPDH)模块替换卷积层模块,以改进YOLOv5算法中预测头层的检测部分,用于提升小目标烟雾的定位精度;最后,在专有数据集上进行试验验证与分析.结果表明:基于改进的YOLOv5小目标烟雾检测算法在目标检测精度上达到85.4%,在准确率、召回率方面,相较于原始算法分别提高了 3.2%、6.3%.
Small target smoke detection algorithm based on improved YOLOv5
In order to solve the problem of low accuracy of smoke detection for small target in fire,a smoke detection algorithm based on improved YOLOv5 was proposed.Firstly,FFA module was introduced into the backbone network,so that the model focused on the extraction of smoke feature information of small target.Secondly,the convolutional layer module was replaced by MPDH module to improve the detection part of the prediction head layer in the YOLOv5 algorithm,which was used to improve the positioning accuracy of small target smoke.Finally,the experimental results and analysis were carried out on the proprietary data set.The results show that the improved YOLOv5 small target smoke detection algorithm achieves 85.4%target detection accuracy,and the accuracy and recall rate are improved by 3.2%and 6.3%respectively compared with the original algorithm.

small target smokesmoke detection algorithmYOLOv5feature fusion attention(FFA)multi-scale pyramid decoupling head(MPDH)

张军、尹柳、巩欣飞、徐赫桦

展开 >

华北科技学院矿山安全学院,河北廊坊 065201

北京惠风联合防务科技有限公司,北京 100020

小目标烟雾 烟雾检测算法 YOLOv5 特征融合注意力(FFA) 多尺度金字塔解耦头(MPDH)

国家重点研发计划课题

2018YFC0808306

2023

中国安全科学学报
中国职业安全健康协会

中国安全科学学报

CSTPCDCSCD北大核心
影响因子:1.548
ISSN:1003-3033
年,卷(期):2023.33(11)
  • 11