首页|基于机器学习的建筑火灾蔓延快速预测

基于机器学习的建筑火灾蔓延快速预测

扫码查看
为了迅速预演或重现火场,实时调整火场救援策略,并为建筑设计提供有利于消防工程的空间构成方案,利用火灾动力学软件(FDS)和机器学习技术,研究建筑火灾的关键影响因素.以单室火灾烟气溢出为案例,利用11种空间构成参数和7 776组火灾工况,采用5类机器学习算法训练火场模拟结果数据,并完成算法效率评估.结果表明:机器学习算法适用于建筑空间这类离散型的参数学习与评估预测,它能够直观地给出各参数的权重,挖掘火灾动力学系统中的关键信息,实现火场数据可视化;其中,随机森林(RF)算法具有最高的预测效率,其最佳预测准确率可达91.82%.
Fast prediction for building fire spread based on machine learning
In order to quickly rehearse or reproduce the fire scene,the key influencing factors of building fire were studied by using fire dynamics software(FDS)and machine learning technology,so as to adjust the fire rescue strategy in real-time,and finally provide a space composition scheme conducive to fire engineering for architectural design.In this paper,a single-room fire smoke overflow was taken as a case,and 5 kinds of algorithm models were used to perform machine learning training and efficiency evaluation on 11 spatial composition parameters and fire conditions,a total of 7 776 sets of fire simulation result data.The experimental results show that the machine learning algorithm is suitable for parameter learning and evaluation prediction of discrete types such as building space.It can intuitively give the weight of each parameter,mine the key information in the fire dynamics system,and realize the visualization of fire data.The Random Forests(RF)algorithm has the highest prediction efficiency,and its best prediction accuracy can reach 91.82%.

building firesrapid fire predictionmachine learningweight analysisspatial composition

郭震、贾笑岩、李富民、胡妍、闫秋艳

展开 >

中国矿业大学力学与土木工程学院,江苏徐州 221116

江苏省土木工程环境灾变与结构可靠性高校重点实验室,江苏徐州 221116

中国矿业大学计算机科学与技术学院,江苏徐州 221116

建筑火灾 快速预测 机器学习 权重占比 空间构成

国家自然科学基金资助

51878656

2023

中国安全科学学报
中国职业安全健康协会

中国安全科学学报

CSTPCDCSCD北大核心
影响因子:1.548
ISSN:1003-3033
年,卷(期):2023.33(11)
  • 1
  • 17