首页|基于改进YOLOv5s的外脚手架隐患图像识别技术

基于改进YOLOv5s的外脚手架隐患图像识别技术

扫码查看
为提高外脚手架安全管理的质量和效率,基于图像识别技术提出一种改进YOLOv5s的外脚手架隐患识别方法.首先,为解决背景信息过多造成的识别精度下降问题,在主干网络嵌入设计卷积注意模块(CBAM),获取隐患的各种细节特征;其次,改进原算法颈部特征融合模块为加权双向特征金字塔网络(BiFPN)结构,有效处理外脚手架隐患目标尺寸分布不均衡造成的多尺度特征不平衡问题;然后,使用边界框损失函数斯库拉交并比(SIoU)Loss替换原损失函数;最后,通过消融试验分析改进模块对模型性能的影响,并与其他算法进行对比分析,验证隐患识别效果.结果表明:改进后的网络实现均值平均精度(mAP@0.5:0.95)评分提升5.13%,召回率提升3.45%,对多尺度、多目标及复杂背景下的外脚手架隐患具有良好的识别效果.
Research on image recognition technology for external scaffold hidden danger based on improved YOLOv5s
In order to improve the quality and efficiency of external scaffold safety management,an improved YOLOv5 s external scaffold hidden danger identification method is proposed based on image recognition technology.Firstly,in order to solve the problem that the recognition precision decreases due to more background information,a convolutional block attention module(CBAM)was embedded in the algorithm backbone network to obtain various detailed features of hidden danger.Secondly,the neck feature fusion module was improved into BiFPN,which can effectively deal with the problem of multi-scale feature imbalance caused by the uneven size distribution of scaffolding hidden targets.Thirdly,the original frame loss function was replaced by Scylla intersection over union(SIoU)Loss.Finally,the influence of the improved module on the performance of the model was analyzed by ablation test and compared with other algorithms to verify the recognition effect.The results show that the score of mAP@0.5:0.95 is increased by 5.13%,and the recall rate is increased by 3.45%.The algorithm has a good recognition effect in multi-scale,the multi-target and complex background of construction sites.It provides technical support for the further application of image recognition technology in the field of external scaffold safety management in a construction site.

YOLOv5sexternal scaffold hidden dangerimage recognitionmulti-scale featuresmean average precision(mAP)bi-directional feature pyramid network(BiFPN)

赵江平、刘星星、张想卓

展开 >

西安建筑科技大学资源工程学院,陕西西安 710055

YOLOv5s 外脚手架隐患 图像识别 多尺度特征 均值平均精度(mAP) 加权双向特征金字塔网络(BiFPN)

2023

中国安全科学学报
中国职业安全健康协会

中国安全科学学报

CSTPCDCSCD北大核心
影响因子:1.548
ISSN:1003-3033
年,卷(期):2023.33(12)
  • 1
  • 7