首页|基于t-SSA-BP的煤矿噪声职业健康损害预测

基于t-SSA-BP的煤矿噪声职业健康损害预测

扫码查看
为精准预测煤矿接噪人员职业健康损害情况,基于分位图法选取健康损害数据影响因素,依据噪声职业健康损害评估方法,以自适应t分布变异因子和麻雀搜索算法(SSA)作为参数优化算法,建立t-SSA-BP煤矿噪声职业健康损害预测模型,利用基准函数测试算法寻优性能,并以陕北地区10个煤矿为研究对象,采用现场调查、理论分析和Matlab仿真模拟方法验证煤矿噪声职业健康损害预测模型.结果表明:噪声暴露强度、个体年龄、接噪工龄和接噪岗位4个指标是煤矿噪声健康损害的影响因素;t-SSA较SSA在4种基准函数上整体精度提升66.0%,5种噪声健康损害神经网络预测模型预测精度从高到低依次为:t-SSA-BP>SSA-BP>PSO-BP>CFA-PSO-RBF>PSO-GRNN,t-SSA-BP预测模型的平均绝对误差(MAE)、平均绝对百分误差(MAPE)相比SSA-BP分别降低68.1%、66.7%,决定系数(R2)达0.999,预测精度明显提升,且收敛速度更快.
Prediction of occupational health damage caused by coal mine noise based on t-SSA-BP
In order to accurately predict the occupational health damage of workers exposed to noise in coal mines,the influencing factors were selected based on the quantile plot method.According to the noise occupational health damage assessment method,the adaptive t distribution variation operator and SSA were used as parameter optimization algorithms to establish the t-SSA-BP coal mine noise occupational health damage prediction model,and the benchmark function was used to test the optimization performance of the algorithm.10 coal mines in northern Shaanxi were taken as the research objects,and the prediction model was verified by field investigation,theoretical analysis and Matlab simulation.The results show that the noise exposure intensity,individual age,length of service and noise exposure post are the influencing factors of noise health damage in coal mines.The overall accuracy of t-SSA is 66.0%,which is higher than that of SSA in four benchmark functions.The order of accuracy of the five prediction models is:t-SSA-BP>SSA-BP>PSO-BP>CFA-PSO-RBF>PSO-GRNN.Compared with SSA-BP,the MAE and MAPE of t-SSA-BP prediction model decreases by 68.1%and 66.7%respectively,and the R2 reaches 0.999.The prediction accuracy and convergence rate are significantly improved.

adaptive t distribution mutation operatorsparrow search algorithm(SSA)coal mine noiseprediction of health damageBP neural network

高晓旭、高璐、潘相旭、高翔、麻昊

展开 >

西安科技大学能源学院,陕西西安 710054

西安科技大学西部矿井开采及灾害防治教育部重点实验室,陕西西安 710054

自适应t分布变异因子 麻雀搜索算法(SSA) 煤矿噪声 健康损害预测 BP神经网络

国家自然科学基金资助

52074208

2023

中国安全科学学报
中国职业安全健康协会

中国安全科学学报

CSTPCDCSCD北大核心
影响因子:1.548
ISSN:1003-3033
年,卷(期):2023.33(12)
  • 14