首页|基于MISSA-SVM模型的边坡稳定性预测及应用

基于MISSA-SVM模型的边坡稳定性预测及应用

扫码查看
为提高边坡稳定性的预测精度,提出一种基于多策略改进的麻雀搜索算法(MISSA)优化支持向量机(SVM)的边坡稳定性预测模型.选取容重γ、黏聚力c、内摩擦角Ф、边坡角φf、边坡高度H、孔隙压力比ru等6 个代表性特征作为模型的预测指标.针对麻雀优化算法(SSA)存在的收敛速度慢、精确度不高、易陷入局部最优等问题,引入一维复合混沌映射、正余弦算法(SCA)、Levy飞行机制和步长因子动态调整等策略进行优化改进,构建基于MISSA-SVM的边坡稳定性预测模型.将MISSA-SVM模型应用到大溪滑坡等9 组边坡工程实例进行验证.结果表明:MISSA-SVM模型的准确率、精确率、召回率、F1 分数、均方误差(MSE)和曲线下面积(AUC)分别达到 96.29%、92.3%、100%、0.96、0.016 和0.967,均优于SSA优化的SVM模型和BP 模型,预测结果与实际边坡状况完全吻合,表明MISSA-SVM模型具有较强的泛化能力.
Slope stability prediction and application based on MISSA-SVM model
In order to further improve the prediction accuracy of slope stability,a slope stability prediction model based on MISSA optimized SVM was proposed.Six representative indexes,including bulk density(γ),cohesion(c),internal friction angle(Ф),slope angle(φf),slope height(H)and pore pressure ratio(ru)were selected as the prediction indexes of the model.In response to the problems of slow convergence speed,low accuracy,and susceptibility to local optima in the sparrow optimization algorithm(SSA),strategies such as one-dimensional composite chaotic mapping,SCA,Levy flight mechanism,and dynamic adjustment of step size factor are introduced for optimization and improvement.A slope stability prediction model based on MISSA-SVM was constructed.The MISSA-SVM model was applied to 9 groups of slope engineering examples,such as the Daxi landslide,for verification.The results show that the accuracy,precision,recall,F1 score,mean square error(MSE)and area under the curve(AUC)of the MISSA-SVM model reach 96.29%,92.3%,100%,0.96,0.016 and 0.967,respectively,which are better than the SSA-optimized SVM model and BP model,and the prediction results are completely consistent with the actual slope conditions,indicating that the MISSA-SVM model has strong generalization ability.

multi-strategy improvements sparrow search algorithm(MISSA)support vector machine(SVM)slope stabilitysine cosine algorithm(SCA)predictive indicators

王团辉、王超、吴顺川、王琦玮、徐健珲

展开 >

昆明理工大学 国土资源工程学院,云南 昆明 650093

自然资源部 高原山地地质灾害预报预警与生态保护修复重点实验室,云南 昆明 650093

云南省高原山地地质灾害预报预警与生态保护修复重点实验室,云南 昆明 650093

多策略改进麻雀搜索算法(MISSA) 支持向量机(SVM) 边坡稳定性 正余弦算法(SCA) 预测指标

云南省科技重大专项云南省创新团队项目

202202AG050014202105AE160023

2024

中国安全科学学报
中国职业安全健康协会

中国安全科学学报

CSTPCD北大核心
影响因子:1.548
ISSN:1003-3033
年,卷(期):2024.34(4)
  • 33