首页|基于概率分布函数的石化装置异常状态早期预警方法

基于概率分布函数的石化装置异常状态早期预警方法

扫码查看
为减少石油化工装置引发泄漏、火灾及爆炸等风险,以典型的催化裂化装置为研究对象,提出一种基于概率分布函数的石化装置异常状态早期预警新方法.通过样条拟合原理,揭示装置压力、温度、流量等运行参数在一段时间内的变化趋势,获取这些参数的偏离速率和偏离量等特征参数.基于威布尔分布确定装置失效概率分布函数,并将提取的特征参数与失效函数相结合,构建包含特征参数的概率分布数学模型.在此基础上,提出一套完整的预警流程,实现催化裂化过程中的实时风险状态评估及异常预警.结果表明:该方法能够在运行参数震荡、阶跃、平缓变化趋势下实现异常预警,相较于传统的仪表系统,该预警方法的时间可提前87~621 s,可解决仪表系统单一阈值报警后异常处置时间有限的弊端.此外,通过对比不同的数据处理方法,发现基于样条拟合的预警模型效果更佳.
Early warning method for abnormal states in petrochemical equipment based on probability distribution functions
To mitigate the risks of leakage,fires and explosions in petrochemical equipment,focusing on a typical catalytic cracking unit,a novel early warning method for detecting abnormal states using probability distribution functions was introduced.Spline fitting principles were used to uncover the trends in operating parameters such as pressure,temperature and flow rate over time,and to extract characteristic parameters such as deviation rate and deviation amount.By employing the Weibull distribution,the failure probability distribution function of the equipment was determined.The extracted characteristic parameters were integrated with the failure function to construct a probabilistic distribution mathematical model incorporating these features.Based on this model,a comprehensive early warning process was developed,facilitating real-time risk assessment and anomaly detection during the catalytic cracking process.The findings demonstrate that this method can effectively predict anomalies under conditions of oscillation,step changes,and gradual trends in operating parameters.Compared to traditional instrument systems,this early warning method advances the warning time by 87 to 621 seconds,addressing the limitation of limited response time following single-threshold alarms in the conventional systems.Furthermore,a comparison of various data processing methods reveals that the early warning model based on spline fitting exhibits superior performance.

probability distribution functionpetrochemical equipmentabnormal statesearly warningoperating parameters

武胜男、胡一鸣、张来斌、王学岐、王睿博

展开 >

中国石油大学(北京)安全与海洋工程学院,北京 102249

应急管理部油气生产安全与应急技术重点实验室,北京 102249

中国石油天然气股份有限公司安全环保技术研究院,辽宁大连 116000

概率分布函数 石油化工装置 异常状态 早期预警 运行参数

中石油科技项目

AQHBY-2022-JS-54

2024

中国安全科学学报
中国职业安全健康协会

中国安全科学学报

CSTPCD北大核心
影响因子:1.548
ISSN:1003-3033
年,卷(期):2024.34(7)
  • 12