首页|基于巡检机器人的吊装作业场景DPIM算法

基于巡检机器人的吊装作业场景DPIM算法

扫码查看
为提高吊车安全作业的高精度检测预警,增强企业安全管理能力,围绕工业安全事件分析与监测预警无人化的需求,定制吊装场景地面和空中飞行相结合的巡检机器人,智能化吊装过程安全规程监控、弹窗图像记录和安全告警.首先,制作包含3 120张图片的吊装数据集Cranes-Dataset(CRN-Dataset),提出一种动态视角智能监测(DPIM)算法,以增强人-车-物多尺度目标的快速检测能力;然后,依据多帧图像的角点检测和带噪声基于密度的聚类方法,以及吊车与作业工人空间距离的安全属性,制定安全规则触发告警的流程,实时记录违规操作图像并弹窗预警.结果表明:经过实际部署和验证,DPIM算法相较于其他传统算法,吊装作业目标识别能力有明显提高,且适用嵌入式边缘智能分析节点的实时计算与数据传输,完成危险区域人员拒止的现场部署.
DPIM algorithm for hoisting operation scene based on inspection robot
In order to improve the high-precision detection and early warning of crane safety operation and enhance the safety management ability of enterprises,focusing on the needs of unmanned industrial safety incident analysis and monitoring and early warning,an inspection robot that combines ground and air flight in hoisting scene was customized to intelligentize hoisting safety monitoring,pop-up image recording and safety alarm.A lifting dataset Cranes-Dataset(CRN-Dataset)containing 3 120 images was made,and DPIM algorithm was proposed to enhance the rapid detection ability of multi-scale objects.Based on corner detection and density-based spatial clustering of applications with noise and considering the safety attributes of the space distance between cranes and workers,the process of triggering alarms based on safety rules was developed to record real-time illegal operation image and popup alarm.The results show that,after actual deployment and verification,the DPIM algorithm significantly improves target identification ability compared with other traditional algorithms,and it is suitable for real-time calculation and data transmission of embedded edge intelligent analysis nodes to complete field deployment.

inspection robothoisting scenedynamic perspective intelligent monitoring(DPIM)algorithmpersonnel denialedge intelligent analysis

林世康、侯庆文、关淯尹、王文财、李嘉禄、陈先中

展开 >

北京科技大学自动化学院,北京 100083

北京科技大学顺德创新学院,广东佛山 528399

北京建筑材料科学研究总院有限公司,北京 100041

巡检机器人 吊装场景 动态视角智能监测(DPIM)算法 人员拒止 边缘智能分析

国家重点研发计划项目广东佛山市科技创新项目

2023YFB4706900BK22BE022

2024

中国安全科学学报
中国职业安全健康协会

中国安全科学学报

CSTPCD北大核心
影响因子:1.548
ISSN:1003-3033
年,卷(期):2024.34(7)
  • 2