首页|基于暴雨灾害短视频的多模态情感特征研究

基于暴雨灾害短视频的多模态情感特征研究

扫码查看
为提高灾害应对效率,将"河北暴雨""黑龙江暴雨"作为典型跨区域研究案例,收集短视频的文本-图像-音频多模态数据;面对海量的非结构化数据,运用深度学习技术,构建多模态情感智能分类模型,实现短视频情感特征的提取、跨模态融合与智能情感分类;并综合利用时空大数据,在时空维度上深度挖掘与分析暴雨灾害短视频多模态情感特征.结果表明:该模型准确率达85%以上,能有效实现短视频多模态情感智能分类任务.在时间维度上,网民情感波动与暴雨灾害周期大致相符,可作为判断灾情严重程度和舆情走向的依据;媒体及政府的干预对暴雨灾害情感演化具有重要作用.在空间维度上,消极情感随灾情转移呈现"低—高—低"变化趋势,且消极情感的共鸣和扩散效应呈现明显的地域性特征,需重视灾区、我国部分东部地区及类似灾害频发的非灾区舆情引导工作.
Research on multimodal emotion characteristics based on short video of rainstorm disaster
To improve the efficiency of disaster response,the"Hebei rainstorm"and"Heilongjiang rainstorm"were adopted as illustrative cross-regional research cases,and text-image-audio multimodal data were collected from short videos.In the face of massive unstructured data,deep learning technology was employed to realize the extraction of multimodal emotional features,cross-modal integration and intelligent sentiment classification in short videos.By comprehensively using spatial and temporal big data,the multimodal emotional characteristics of short video of rainstorm disaster were deeply mined and analyzed in the spatial and temporal dimension.The results indicate that the model's accuracy exceeds 85%,efficiently fulfilling the objectives set for short video analysis.From the temporal perspective,the emotional fluctuations of netizens broadly align with the cycle of rainstorm disasters,providing a basis for assessing disaster severity and public opinion trends.Furthermore,the intervention of media and government entities plays a significant role in shaping the emotional evolution surrounding rainstorm disasters.In terms of spatial dimensions,negative emotions exhibit a"low-high-low"trend as disasters shift locations,and the resonance and diffusion of these emotions display distinct regional characteristics.Therefore,it is imperative to prioritize public opinion guidance in disaster-stricken areas,as well as in some eastern regions of China and non-disaster areas experiencing similar phenomena.

rainstorm disastershort videomultimodal emotion characteristicsdeep learningemotional classification

晋良海、王抒情、王昕煜

展开 >

三峡大学水电工程施工与管理湖北省重点实验室,湖北宜昌 443002

三峡大学水利与环境学院,湖北宜昌 443002

三峡大学安全生产标准化评审中心,湖北宜昌 443002

暴雨灾害 短视频 多模态情感特征 深度学习 情感分类

教育部人文社科基金资助中国长江三峡集团有限公司企业科研项目

21YJA630038202103551

2024

中国安全科学学报
中国职业安全健康协会

中国安全科学学报

CSTPCD北大核心
影响因子:1.548
ISSN:1003-3033
年,卷(期):2024.34(7)
  • 11