首页|基于多层时序网络模型的中国机场网络特征分析

基于多层时序网络模型的中国机场网络特征分析

扫码查看
为克服静态网络模型在分析动态系统时出现网络结构特性反映不全面和数据表达失真的问题,引入时间属性,提出一种基于时序复杂网络模型的中国机场网络(CAN)结构分析方法.通过分析节点时序度、时序度中心性、时序介数中心性和时序接近中心性等网络特征指标,探究中国机场时序网络的结构特征,筛选和排序网络中的重要机场节点,并分析异质节点产生的原因.结果表明:CAN结构呈现出无标度网络特性;CAN的平均时序距离值差距较大,最大值是最小值的6.06倍;乌鲁木齐地窝堡国际机场(ZWWW)、呼和浩特白塔国际机场(ZBHH)的时序介数中心性相对其他指标较高,其在网络中起到重要的中心作用,而深圳宝安国际机场(ZGSZ)相对其他指标具有较高的时序度中心性.
Analysis of Chinese airport network characteristics based on multi-layer temporal network model
To address the problem of incomplete reflection of network structure characteristics and data distortion in static network models used in dynamic systems,an airport network structure analysis method based on a temporal complex network model was proposed by introducing time attributes.Network characteristic indicators such as nodal temporal degree,temporal centrality,temporal betweenness centrality,and temporal closeness centrality were analyzed.Then,the structural properties of CAN were investigated.Moreover,crucial airport nodes within the temporal network were identified and ranked,and the reasons for the heterogeneous node generation were analyzed.The results indicated that the temporal network structure of Chinese airports presented scale-free network characteristics.The average temporal distance values of CAN vary significantly with the maximum being 6.06 times the minimum.ZWWW (Urumqi Diwopu International Airport) and ZBHH (Hohhot Baita International Airport) represented relatively higher temporal betweenness centrality than other indicators,playing an important central role in the network.However,ZGSZ (Shenzhen Bao'an International Airport) had a higher temporal degree of centrality than other indicators.

temporal networkChinese airport network (CAN)multi-layer temporal network model (MTNM)network characteristics indicatorpower distribution

郭九霞、李虹屹、魏嵩、叶伟、王超

展开 >

中国民用航空飞行学院 空中交通管理学院,四川 广汉618307

海南机场设施股份有限公司机场建设规划部,海南 海口,570204

民航局运行监控中心 飞行计划处,北京100710

中国民用航空飞行学院 空管中心,四川 广汉618307

中国民航大学空中交通管理学院,天津300300

展开 >

时序网络 中国机场网络(CAN) 多层时序网络模型(MTNM) 网络特征指标 幂律分布

2024

中国安全科学学报
中国职业安全健康协会

中国安全科学学报

CSTPCD北大核心
影响因子:1.548
ISSN:1003-3033
年,卷(期):2024.34(10)