首页|基于LightGBM-SHAP的民机硬着陆可解释预测

基于LightGBM-SHAP的民机硬着陆可解释预测

扫码查看
为预防民用飞机的硬着陆超限事件,首先,收集包含动力学变量、系统性能和其他工程参数的机载快速存取记录器(QAR)数据,开展机场航段聚类、样本平衡、统计特征提取等数据处理活动;然后,基于轻量级梯度提升机(LightGBM)模型预测民机硬着陆事件,并与极限梯度提升(XGBoost)、决策树(DT)、长短期记忆网络(LSTM)模型进行综合对比;最后,利用Shapley可加性解释(SHAP)算法进一步分析硬着陆事件的致因机制及各飞行参数特征对模型预测结果的影响.结果表明:所提方法不仅显示出良好的硬着陆事件预测性能,准确率、正确率和召回率分别达到99%,92%和88%,还可针对具体航段对硬着陆预测模型的决策过程提供定量的、可视化的解释信息.
Explainable prediction for hard landing of civil aircraft based on LightGBM-SHAP
In order to prevent hard landing overrun events of civil aircraft,first,data including kinematics,system performance and other engineering parameters was collected from QAR.Then QAR data processing activities such as the airport segment clustering,sample balancing and statistical feature extraction were carried out.Subsequently,LightGBM model was used to predict the hard landing events of civil aircraft,and compared with extreme gradient boosting (XGBoost),decision tree (DT) and long short-term memory (LSTM) models.Finally,the shapley additive explanation (SHAP) algorithm was employed to identify the causal mechanisms of hard landing events and to analyze the impact of various flight parameters on the model's prediction results.The result demonstrates that the proposed model not only exhibits high accuracy and precision in predicting hard landing events (accuracy,correctness and recall reaching 99%,92% and 88%,respectively),but also provides quantitative and visual explanation information for the decision-making process of hard landing prediction for specific flight segments.

lightweight gradient boosting machine (LightGBM)civil aircrafthard landingquick access recorder (QAR) datamachine learningexplainable

肖国松、刘嘉琛、张元珊、董磊、陈曦

展开 >

中国民航大学 民航航空器适航审定技术重点实验室,天津300300

中国民航大学科技创新研究院,天津300300

中国民航大学 安全科学与工程学院,天津300300

中国商飞民用飞机试飞中心,上海201323

展开 >

轻量级梯度提升机(LightGBM) 民用飞机 硬着陆 快速存取记录器(QAR)数据 机器学习 可解释

2024

中国安全科学学报
中国职业安全健康协会

中国安全科学学报

CSTPCD北大核心
影响因子:1.548
ISSN:1003-3033
年,卷(期):2024.34(10)