首页|基于TrAdaBoost-GBDT模型的排土场边坡稳定状态判别

基于TrAdaBoost-GBDT模型的排土场边坡稳定状态判别

扫码查看
针对露天矿排土场失稳数据获取困难,样本数据量少等问题,提出基于迁移学习算法的露天矿排土场边坡稳定状态判别模型;结合陕西省F露天矿排土场边坡的实际地质条件和降雨情况,设计降雨条件下排土场不同土石混合比边坡的相似模拟试验方案,并采集和处理试验中边坡模型的含水率、土压力和孔隙水压力数据;考虑到小样本数据集对梯度提升回归树(GBDT)模型分类精度的影响,运用迁移学习思想,利用迁移自适应增强算法(TrAdaBoost)对源域数据集和目标域数据集样本权重进行迭代更新,以GBDT模型作为数据样本训练的弱学习器,最终根据弱学习器的分类结果,通过加权多数表决法生成一种基于迁移学习的TrAdaBoost-GBDT排土场边坡稳定状性判别模型,以提高小样本数据标签类别的判别准确率.结果表明:相对其他算法模型,提出的排土场边坡稳定状态判别模型在稳定状态判别上有更好的表现,准确率、精准率、召回率和曲线下面积值(AUC)分别达到93.3%、87.5%、100%和93.8%,能够作为边坡稳定状态判别的分类器.该模型相对其他算法模型可以提高小样本数据集的边坡稳定状态判别的准确性,弥补机器学习对小样本数据集分类结果精度较低的不足.
Discrimination of dump slope stability state based on TrAdaBoost-GBDT model
In view of the difficulties in obtaining instability data of open-pit mine dump and the small amount of sample data,a discrimination model of slope stability state of open-pit mine dump based on migration learning algorithm was proposed.According to the actual geological conditions and rainfall conditions of the dump slope of F open-pit mine in Shaanxi Province,a similar simulation test scheme of slope with different soil-rock mixing ratio was designed under the condition of rainfall.The data of water content,earth pressure and pore water pressure of the slope model were collected and processed.Considering the influence of small sample data set on the classification accuracy of GBDT model,using the idea of transfer learning,the sample weight of source domain data set and target domain data set was iteratively updated by TrAdaBoost algorithm,and the GBDT model was used as the weak learner for data sample training.Finally,according to the classification result of the weak learner,the weighted majority voting method was used to generate a TrAdaBoost-GBDT dump slope stability discrimination model based on transfer learning to improve the discrimination accuracy of small sample data label categories.The results show that the proposed dump slope stability state discrimination model has a better performance in judging the stable state than other algorithm models,and the values of accuracy,precision,recall and area under curve(AUC)are 93.3%,87.5%,100%and 93.8%,respectively.Compared with other algorithm models,this model can improve the accuracy of slope stability discrimination of small sample data sets,and make up for the low accuracy of machine learning classification results of small sample data sets.

dump slopestability state discriminationtransfer adaptive boosting-gradient boosting decision tree(TrAdaBoost-GBDT)transfer learningsmall samples

江松、李涛、李锦源、李研博、张存良、张立杰

展开 >

西安建筑科技大学资源工程学院,陕西西安7100552

西安市智慧工业感知计算与决策重点实验室,陕西西安 710055

内蒙古汇能煤电集团有限公司,内蒙古鄂尔多斯 017000

唐山冀东水泥股份有限公司,河北唐山 063000

展开 >

排土场边坡 稳定状态判别 迁移自适应增强梯度提升回归树(TrAdaBoost-GBDT) 迁移学习 小样本

2024

中国安全科学学报
中国职业安全健康协会

中国安全科学学报

CSTPCD北大核心
影响因子:1.548
ISSN:1003-3033
年,卷(期):2024.34(11)