首页|基于VGGNet、EfficientNet以及CaiT深度学习模型建立中药饮片快速识别方法研究

基于VGGNet、EfficientNet以及CaiT深度学习模型建立中药饮片快速识别方法研究

扫码查看
目的 通过自主采集中药饮片图像数据集,比较三种不同深度学习模型,建立一套中药饮片快速识别方法。方法 在市面上采集 10 个厂家共 402 批次 248 个不同品种中药饮片,通过数码相机获得图像,建立中药图像数据集。对数据集进行分类汇总以及数据扩增后分成训练集、验证集及测试集。分别选用VGG19,EfficientNetV2-B与CaiT作为骨架模型,基于ImageNet进行迁移学习。进行 20 轮训练测试其拟合度,并进行十折交叉验证,选取合适的模型建立识别系统。结果 VGG19 与CaiT表现出很好的拟合性。EfficientNetV2-B3存在收敛不佳的情况。优选VGG19 与CaiT作为骨架网络,采用验证集数据进行十折交叉验证,VGG19 准确率为 81。6%,CaiT准确率为77。06%。结论 本研究采用深度学习技术,在选择合适的骨干模型下,能有效构建出准确率较高的常见中药饮片的识别系统。
Research on fast recognition system of chinese materia medica based on VGGNet,EfficientNet and CaiT models
Objective To establish a rapid recognition method of CMM(chinese materia medica)by independently collecting image data set of CMM and comparing three different deep learning models.Methods A total of 402 samples of 248 CMM from 10 manufacturers were collected in the market,and the images were taken by digital camera to establish the CMM image dataset.The related image data are summarized and amplified into a training set,a validation set and a test set.VGG19,EfficientNetV2-B and CaiT were selected as the backbone models respectively.Transfer learning was performed based on ImageNet,20 rounds of training were performed to test their fit degree,and 10-fold cross-validation was performed to select suitable models and establish the recognition system.Results VGG19 and CaiT showed a good fit.Poor convergence occurs in EfficientNetV2-B3.VGG19 and CaiT are selected as the backbone network,and the verification set data is used for 10-fold cross-validation,and the accuracy rate of VGG19 is 81.6%and the accuracy rate of CaiT is 77.06%.Conclusion In this study,deep learning technology can effectively build a recognition system of common CMM with high accuracy under the selection of appropriate backbone model.

Traditional Chinese medicineArtificial intelligenceDeep learningNeural network

冯敬文、叶永浓、杨梓玥、林宇建、陈志维

展开 >

广州市番禺区中医院药学部,广州 511490

国家中药现代化工程研究中心粤帮炮制研究分中心,广州 511430

中药 人工智能 深度学习 神经网络

2024

中国处方药
南方医药经济研究所

中国处方药

影响因子:0.649
ISSN:1671-945X
年,卷(期):2024.22(12)