首页|冠状动脉CT血管造影计算FFR深度学习方法的诊断临床研究

冠状动脉CT血管造影计算FFR深度学习方法的诊断临床研究

扫码查看
目的 本研究旨在评估冠状动脉CT血管造影计算分流量储备(fractional flow reserve,FFR)深度学习方法的诊断准确性研究,以期为临床诊治提供参考.方法 这是一项单中心的前瞻性研究,63名患者参加了深度学习FFR的诊断性能评估.为了评估冠状动脉狭窄的缺血风险,提出了冠状动脉三维几何形状的自动量化方法和基于深度学习的FFR预测方法.以线状FFR为参考标准,评价深度学习FFR的诊断性能.采用受试者一操作特征曲线下面积(AUC)分析确定主要评价因子.结果 对于每个患者水平,以参照FFR测量的临界值≤0.8时,深度学习FFR的AUC为0.928,缺血相关病变方面比CTA狭窄严重程度0.664表现出更高的诊断性能.深度学习FFR与FFR相关(R=0.686,P<0.001),平均差值为-0.006±0.0091(P=0.619).二次评价的准确性、敏感性、特异性分别为87.3%、97.14%、95.45%.结论 深度学习FFR是一种新的方法,可以有效地评估冠状动脉狭窄的功能意义.
Study on the Diagnostic Accuracy of FFR Deep Learning Method in Coronary Artery CT Angiography Calculation
Objective This study aims to evaluate the diagnostic accuracy of deep learning methods for calculating fractional flow reserve(FFR)in coronary artery CT angiography,in order to provide reference for clinical diagnosis and treatment.Methods This is a single center Prospective cohort study,63 patients participated in the diagnostic performance evaluation of deep learning FFR.In order to evaluate the ischemic risk of coronary artery stenosis,an automatic quantification method for the three-dimensional geometric shape of coronary arteries and a deep learning based FFR prediction method were proposed.Evaluate the diagnostic performance of deep learning FFR using linear FFR as a reference standard.Determine the main evaluation factors using the area under the subject operating characteristic curve(AUC)analysis.Results For each patient level,deep learning FFR showed higher diagnostic performance in determining ischemic related lesions with an area under the curve of 0.928 compared to CTA stenosis severity of 0.664 when the critical value measured by reference FFR was ≤ 0.8.FFR of deep learning was correlated with FFR(R=0.686,P<0.001),and the average difference was-0.006±0.0091(P=0.619).The accuracy,sensitivity,specificity,positive predictive value,and negative predictive value of the secondary evaluation were 87.3%,97.14%,and 95.45%,respectively.Conclusion Deep learning FFR is a new method that can effectively evaluate the functional significance of coronary artery stenosis.

Coronary Artery CT AngiographyDeep Learning ModelDiversion Reserve

周建昌、纪丽萍、蒙志宏、张帆、曹宇佳

展开 >

河北北方学院附属第二医院医学影像科(河北张家口 075100)

冠状动脉CT血管造影 深度学习模型 分流量储备

河北省卫生健康委科研项目

20231469

2024

中国CT和MRI杂志
北京大学深圳临床医学院 北京大学第一医院

中国CT和MRI杂志

CSTPCD
影响因子:1.578
ISSN:1672-5131
年,卷(期):2024.22(5)
  • 20