首页|探索基于增强CT影像组学鉴别良恶性腮腺肿瘤的应用价值

探索基于增强CT影像组学鉴别良恶性腮腺肿瘤的应用价值

扫码查看
目的 利用增强CT影像组学特征构建影像组学模型并绘制列线图鉴别良恶性腮腺肿瘤.方法 回顾性分析山西白求恩医院行颌面部两期增强CT患者103例,所有患者经病理证实均为腮腺肿瘤(良性71例,恶性32例).于两期增强CT图像手动勾画肿瘤ROI,提取组学特征采用LASSO降维筛选特征后计算出影像组学评分(rad-score)并建立影像组学预测模型并绘制列线图.采用ROC曲线对模型性能评估,通过实施Hosmer-Lemeshow适合度评估模型的统计拟合度并绘制了校正曲线(calibration curve).采用决策曲线分析(decision curve analysis,DCA)进一步探讨模型的临床应用价值.结果 根据rad-score建立的LR模型在训练集和测试集的AUC分别为0.848(95%CI 0.724-0.931)和0.826(95%CI 0.711-0.925).校准曲线显示出良好的一致性.决策曲线分析显示了显著净收益的增加.结论 基于增强CT影像组学在鉴别良恶性腮腺肿瘤具有术前诊断价值,有助于临床精准诊疗.
Investigating the Clinical Utility of Enhanced CT Radiomics in Distinguishing between Benign and Malignant Tumors of the Parotid Gland
Objective Create a radiomics model and a corresponding nomogram employing features derived from contrast-enhanced CT scans to classify parotid tumors as either benign or malignant.Methods A retrospective analysis was conducted on 103 patients from Shanxi Baiqiu'en Hospital who underwent two-phase contrast-enhanced CT scans of the maxillofacial region.Pathological confirmation revealed that all patients had parotid tumors(71 benign cases,32 malignant cases).Tumor regions of interest(ROIs)were carefully outlined manually on the biphasic contrast-enhanced CT scans,from which radiomic features were subsequently extracted.After feature selection using LASSO dimensionality reduction,a radiomics score(rad-score)was calculated,and a radiomics-based predictive model was developed and represented using a columnar chart.The model's performance was evaluated using ROC curves,and the model fit was evaluated using the Hosmer-Lemeshow test,and calibration curves were generated to determine the model's accuracy.Additionally,decision curve analysis(DCA)was utilized to assess the model's clinical efficacy.The Results showed that the logistic regression(LR)model,based on the radiomics score,achieved an area under the curve(AUC)of 0.848(95%CI 0.724-0.931)in the training set and an AUC of 0.826(95%CI 0.711-0.925)in the testing set.The calibration curve demonstrated good consistency,and the decision curve analysis showed high net benefits as well.Conclusion Enhanced CT radiomics effectively provides preoperative diagnostic insight for distinguishing between benign and malignant parotid tumors,thereby supporting precise clinical diagnosis and treatment planning.

Parotid TumorComputed TomographyRadiomics

杜峻、吴山、刘志荣

展开 >

山西白求恩医院(山西医学科学院同济山西医院),山西医科大学第三医院口腔科(山西 太原 030032)

山西白求恩医院(山西医学科学院同济山西医院),山西医科大学第三医院影像科(山西 太原 030032)

腮腺肿瘤 计算机断层扫描 影像组学

2024

中国CT和MRI杂志
北京大学深圳临床医学院 北京大学第一医院

中国CT和MRI杂志

CSTPCD
影响因子:1.578
ISSN:1672-5131
年,卷(期):2024.22(6)