首页|深度学习技术对颅内外动脉阻塞性狭窄的诊断价值

深度学习技术对颅内外动脉阻塞性狭窄的诊断价值

扫码查看
目的 探究基于深度学习(DL)技术对颅内外动脉阻塞性狭窄的诊断价值.方法 回顾性分析我院2020年1月至2021年6月疑似急性缺血性脑卒中患者,且在一月内接受CTA和DSA.按患者和血管水平将狭窄程度分为正常、轻度狭窄、中度狭窄、重度狭窄和闭塞,阻塞性狭窄定义为直径狭窄率≥70%.以DSA为参考标准,通过受试者工作曲线(ROC)、敏感性、特异性评价诊断性能.结果 在患者水平,DL技术与放射科医师的AUC分别为0.781(敏感性和特异性分别为0.934、0.627)和0.840,差异无统计学意义(P=0.074).在血管水平,DL技术与放射科医师的AUC分别为0.923(敏感性和特异性分别为0.885、0.962)和0.932,差异无统计学意义(P=0.393)o DL技术分析的中位分析时间(8.67 min)明显短于放射科医师(29.55 min)(P<0.001).结论 DL技术可以准确评估颅外和颅内动脉狭窄,耗时短,有望成为优化风险分层和指导治疗策略的方法.
Diagnostic Value of Deep Learning-Based Technology for Obstructive Stenosis of Extracranial and Intracranial Artery
Objective To explore the diagnostic value of deep learning(DL)technology for obstructive stenosis of extracranial and intracranial artery.Methods The study retrospectively included patients suspected with acute ischemic stroke from January 2020 to June 2021,who underwent both CTA and DSA within one month.Degrees of stenosis were classified as normal(0%),mild stenosis(<50%),moderate stenosis(50-69%),severe stenosis(70-99%)and occlusion(100%)on patient-based and vessel-based analysis.Obstructive stenosis was defined as diameter stenosis>70%.Diagnostic performance was assessed through AUC,sensitivity and specificity with DSA as reference standard.Results In patient-based analysis,the AUCs of DL technology and radiologists in detecting obstructive stenosis were 0.781[sensitivity and specificity were 0.934 and 0.627]and 0.840 respectively,and there had no statistical significance(P=0.074).In vessel-based analysis,the AUCs of DL technology and radiologists were 0.923[sensitivity and specificity were 0.885 and 0.962]and 0.932 respectively,and there had no statistical significance(P=0.393).The median analysis time of DL technology was 8.67 minutes,which was significantly lower than 29.55 minutes of radiologists(P<0.001).Conclusion DL technology,with less time-consuming,can accurately assess extracranial and intracranial artery stenosis and will be a promising method to optimize risk stratification and guide treatment strategies.

Deep LearningCTAStenosisExtracranial and Intracranial Artery

郝光宇、陈蒙、刘原庆、秦义人、王希明、胡粟、胡春洪

展开 >

苏州大学附属第一医院放射科

苏州大学医学影像研究所

苏州大学附属第一医院神经内科(江苏苏州 215006)

深度学习 CTA 狭窄 颅内外动脉

2024

中国CT和MRI杂志
北京大学深圳临床医学院 北京大学第一医院

中国CT和MRI杂志

CSTPCD
影响因子:1.578
ISSN:1672-5131
年,卷(期):2024.22(8)