首页|基于XGBoost机器学习算法的肺结节浸润性预测模型构建与验证:一项双中心研究

基于XGBoost机器学习算法的肺结节浸润性预测模型构建与验证:一项双中心研究

扫码查看
目的 采用XGBoost机器学习算法构建一个临床影像模型,预测肺结节病理浸润性,并在一个外部验证组中对模型进行泛化性验证.方法 回顾性纳入CT诊断为孤立性肺结节患者248例,分别提取肺结节区域和结节周围3mm、5mm区域的放射组学特征.经过从粗到细的特征选择后,使用最小绝对收缩和选择算子(LASSO)方法计算Radscore.采用单因素和多因素Logistic回归分析筛选与肺结节浸润性相关的临床放射学因素.然后,利用Logistic和XGBoost算法构建临床-放射组学联合模型,在一个独立的外部验证组(n=147)中评估模型的泛化性能.结果 综合Radscore、CT值、肺结节长度、月牙征的临床放射学XGBoost联合模型对肺结节浸润性的预测效果优于放射组学模型、临床放射学Logistic联合模型,在训练队列中的曲线下面积AUC为0.889(95%CI,0.848~0.927),在外部验证组中曲线下面积AUC为0.889(95%CI,0.823~0.942).结论 我们采用XGBoost机器学习算法构建了一种预测肺结节浸润性的临床放射学模型,结果显示出令人满意的预测效能,并在一个独立外部验证组中得到了良好的泛化性验证,可以帮助临床医生指导肺结节的诊疗并制定评估策略.
Construction and Verification of Pulmonary Nodules Invasion Prediction Model Based on XGBoost Machine Learning Algorithm:A Two-center Study
Objective To construct a clinical radiomics model using XGBoost machine learning algorithm to predict the pathological invasion of pulmonary nodules,and to validate the model generically in an external cohort.Methods 248 patients with isolated pulmonary nodules diagnosed by CT were retrospectively included,and the radiological features of the pulmonary nodules and the surrounding 3mm and 5mm areas were extracted respectively.After feature selection from coarse-to-fine,Radscore is calculated using the least absolute shrinkage and selection operator(LASSO)logistic regression.Univariate and multivariate logistic regression analyses were used to determine the clinical radiological factors associated with pulmonary nodules invasion.A joint clinical-radiomics model was then constructed using Logistic and XGBoost algorithms,and the generalization of the model was evaluated in an independent external validation cohort(n=147).Results The clinical radiology XGBoost combined model with Radscore,CT value,lung nodule length and lunate sign was superior to the radiomic model and Logistic combined model of clinical radiology in predicting pulmonary nodules invasion.The area under the curve(AUC)in the training cohort was 0.889(95%CI,0.848~0.927),and the AUC in the external validation cohort was 0.889(95%CI,0.823~0.942),showing satisfactory predictive efficacy.Conclusion We used the XGBoost machine learning algorithm to construct a clinical radiomics model for predicting pulmonary nodules invasion.The results showed satisfactory predictive efficacy and were well generalized in an independent external validation group,which can help clinicians guide the diagnosis and treatment of pulmonary nodules and develop evaluation strategies.

Pulmonary NodulesExtreme Gradient BoostingMachine LearningRadiomics

夏志颖、刘子蔚、胡秋根、包陈政任、张榕

展开 >

海南省中医院放射科(海南海口 570203)

南方医科大学顺德医院(佛山市顺德区第一人民医院)放射科(广东佛山 528308)

南方医科大学顺德医院附属陈村医院(佛山市顺德区第一人民医院附属陈村医院)放射科(广东佛山 528313)

肺结节 极端梯度上升 机器学习 放射组学

广东省中医药局科研项目佛山市科技计划南方医科大学顺德医院科研启动项目

202413122220001005383SRSP2021021

2024

中国CT和MRI杂志
北京大学深圳临床医学院 北京大学第一医院

中国CT和MRI杂志

CSTPCD
影响因子:1.578
ISSN:1672-5131
年,卷(期):2024.22(8)