首页|CCTA风险预测模型分析冠状动脉钙化评分及评估冠心病风险的研究

CCTA风险预测模型分析冠状动脉钙化评分及评估冠心病风险的研究

扫码查看
目的 计算冠状动脉CT血管造影(CCTA)检查获得的冠状动脉钙化积分(CACs),并与冠状动脉钙化(CAC)的影响因素相结合,用机器学习(ML)分析预测冠心病(CHD)的概率.方法 选择医院收治的疑似冠心病CCTA检查资料,量化CAC程度,基于CACs和临床相关因素评估冠心病的危险性.结果 在5个最大似然模型中,RF的准确度(78.96%)、敏感度(SN)(93.86%)、特异度(51.13%)、马太相关系数(Mcc)(0.5192)表现最好,同时也具有最佳AUC面积(0.8375),远远优于其他4个ML模型.结论 计算机M L模型分析证实了 CACs在预测冠心病发生中的重要性,特别是突出的RF模型.
CCTA Risk Prediction Model Analysis of Coronary Artery Calcification Score and Assessment of Coronary Heart Disease Risk
Objective To calculate the coronary artery calcification scores(CACs)obtained by coronary CT angiography(CCTA)and to predict the probability of coronary heart disease(CHD)by machine learning(ML)analysis combined with the factors influencing coronary artery calcification(CAC).Methods The CCTA data of suspected CHD in hospital were selected,the degree of CAC was quantified,and the risk of CHD was assessed based on CACs and clinical related factors.Results Among the 5 maximum likelihood models,RF had the best accuracy(78.96%),sensitivity(SN)(93.86%),specificity(51.13%),Matthew correlation coefficient(Mcc)(0.5192),and the best AUC area(0.8375),which was much better than the other 4 ML models.Conclusion Computer ML model analysis confirmed the importance of CACs in predicting the occurrence of coronary heart disease,especially the prominent RF model.

CCTA Risk Prediction ModelCoronary Artery Calcification ScoreCoronary Heart Disease Risk

刘扬、宋彦丽、姚旭成、周建昌、俞志军

展开 >

河北北方学院附属第二医院影像科(河北 张家口 075100)

河北北方学院附属第二医院肿瘤科(河北 张家口 075100)

唐山弘慈医院心血管内科(河北唐山 075000)

CCTA风险预测模型 冠状动脉钙化评分 冠心病风险

2024年度河北省医学科学研究课题计划

20242342

2024

中国CT和MRI杂志
北京大学深圳临床医学院 北京大学第一医院

中国CT和MRI杂志

CSTPCD
影响因子:1.578
ISSN:1672-5131
年,卷(期):2024.22(10)