首页|AI技术联合MSCT对肺腺癌磨玻璃结节浸润性病变的诊断价值分析

AI技术联合MSCT对肺腺癌磨玻璃结节浸润性病变的诊断价值分析

扫码查看
目的 探讨人工智能(AI)技术联合多层螺旋CT(MSCT)对肺腺癌磨玻璃结节(GGN)浸润性病变的诊断价值.方法 回顾性分析2018年6月至2023年6月至我院就诊的80例肺腺癌GGN患者(共80个结节)的临床资料,以病理检查结果为"金标准",判断AI技术、MSCT及两者联合对肺腺癌GGN浸润性病变的诊断效能.根据检查结果将患者分成浸润组与非浸润组,分析两组AI参数及CT参数水平.结果 病理检查结果显示浸润性病变患者共38例,设为浸润组,非浸润性病变患者42例,设为非浸润组.单一AI技术、MSCT对肺腺癌GGN浸润性病变的诊断灵敏度、特异度、准确度、阴性预测值及阳性预测值均低于AI技术联合MSCT,分别为92.11%、97.62%、95.00%、97.22%及93.18%.浸润组长径、短径、最大CT值、最大面积及体积均高于非浸润组,最小CT值低于非浸润组,差异有统计学意义(P<0.05).浸润性病变患者病变边缘以毛刺或分叶征为主,病变形态以类圆形为主,出现血管集束征、胸膜凹陷征概率高于非浸润性病变患者,差异有统计学意义(P<0.05).结论 AI技术联合MSCT能有效提高对肺腺癌GGN浸润性病变的诊断效能,病变面积及体积大、长径及短径长、最大CT值高、最小CT值低、边缘毛刺征或分叶征、形态不规则等可作为判断浸润性病变的重要特征.
Diagnostic Value of AI Technology Combined with MSCT in Invasive Lesions of Ground-glass Nodules in Lung Adenocarcinoma
Objective To investigate the diagnostic value of artificial intelligence(AI)technology combined with multi-slice spiral CT(MSCT)in invasive lesions of ground-glass nodules(GGN)in lung adenocarcinoma.Methods The clinical data of 80 patients with GGN(80 nodules)in lung adenocarcinoma who were treated in the hospital from June 2018 to June 2023 were analyzed retrospectively.With pathological results as the gold standard,the diagnostic efficiencies of AI technology,MSCT and their combination in invasive lesions of GGN in lung adenocarcinoma were evaluated.According to examination results,the patients were divided into invasive group and non-invasive group.AI and CT parameters in both groups were analyzed.Results Pathological results showed that there were 38 patients with invasive lesions and 42 patients with non-invasive lesions.The sensitivity,specificity,accuracy,negative and positive predictive values of AI technology or MSCT for diagnosing invasive lesions of GGN in lung adenocarcinoma were lower than those of AI technology combined with MSCT(92.11%,97.62%,95.00%,97.22%and 93.18%).The long diameter,short diameter,maximum CT value,maximum area and volume in the invasive group were larger than those in the non-invasive group,and the minimum CT value was lower than that in the non-invasive group(P<0.05).The proportions of spicule or lobulation signs on the edge,quasi-circular lesions,vessel convergence signs and pleural indentation signs in the invasive group were higher than those in the non-invasive group(P<0.05).Conclusion The combination of AI technology and MSCT can effectively improve the diagnostic efficiency of invasive lesions of GGN in lung adenocarcinoma.Large lesion area and volume,large long and short diameters,high maximum CT value,low minimum CT value,spicule or lobulation signs on the edge and irregular shape are important features that can help to diagnose invasive lesions.

Artificial Intelligence TechnologyMulti-slice Spiral CTLung AdenocarcinomaGround-glass NoduleInvasive Lesion

王一超、王莺、杜红娣、尚海龙、于乐林、徐长贺、叶娟、王铁强、沈海林

展开 >

上海交通大学医学院苏州九龙医院放射科

上海交通大学医学院苏州九龙医院超声科(江苏苏州 215028)

人工智能技术 多层螺旋CT 肺腺癌 磨玻璃结节 浸润性病变

2024

中国CT和MRI杂志
北京大学深圳临床医学院 北京大学第一医院

中国CT和MRI杂志

CSTPCD
影响因子:1.578
ISSN:1672-5131
年,卷(期):2024.22(12)