首页|结内及结周光谱CT影像组学特征鉴别肺腺癌结节与炎性结节的可行性研究

结内及结周光谱CT影像组学特征鉴别肺腺癌结节与炎性结节的可行性研究

扫码查看
目的 探讨双层探测器光谱CT参数及基于结内和结周的影像组学特征鉴别肺腺癌与炎性结节的价值.方法 回顾性收集83例肺腺癌结节和62例炎性结节患者的临床资料及胸部光谱CT参数,随机分为训练集(95例)和验证集(50例).手动勾画动、静脉期40keV单能量图像病灶,形成结内ROI,使用半自动分割程序向外扩展5mm形成结周ROI,计算组内相关系数(ICC)后用斯皮尔曼相关系数、最小绝对收缩和选择算子算法(LASSO)和Logistic分析进行特征筛选.采用多因素Logistic建立临床、影像组学及联合模型,计算曲线下面积(AUC)评估模型性能,采用临床决策曲线(DCA)评估模型临床实用性.结果 男性、毛刺征、静脉期能谱曲线斜率及标准化碘浓度是肺腺癌的临床独立预测因素;经过特征筛选,7个影像组学特征用于构建肺腺癌结节与炎性结节鉴别模型(结内3个、结周1个、结内联合结周3个).联合模型预测性能最佳,AUC为0.91.结论 光谱CT参数及结内联合结周影像组学特征可用于鉴别肺腺癌结节与炎性结节.
A Feasibility Study of Classification between Lung Adenocarcinoma Nodules and Inflammatory Nodules Using Intranodal and Perinodular Radiomics Features Based on Spectral CT
Objective To investigate the diagnostic value of dual detector spectral CT parameters and intranodal and perinodal radiomics features in lung adenocarcinoma nodules and inflammatory nodules.Methods The clinical data and spectral CT parameters of 83 patients with lung adenocarcinoma nodules and 62 patients with inflammatory nodules were collected retrospectively.The cases were randomly divided into training set(n=95)and verification set(n=50).The radiomics features were extracted from the 40keV monoenergy images in arterial phase and venous phase by using 3D-Slicer.The focus was manually sketched and named as intranodal ROI,and then expanded 5mm outward to form perinodal ROI using semi-automatic segmentation program.After calculating the intra-group correlation coefficient(ICC),Spelman correlation coefficient,minimum absolute contraction and selection operator algorithm(LASSO)and Logistic analysis were used for feature screening.Logistic regression analysis was used to establish a clinical model,a radiomics model and a combined model.The area under curve(AUC)was calculated to evaluate the performance of the model,and the decision curve analysis(DCA)was used to evaluate the clinical practicability of the model.Results Male,burr sign,NIC and λHU in venous phase were independent clinical predictors of lung adenocarcinoma.And 7 radiomics features were used to construct radiomics models to distinguish lung adenocarcinoma nodules from inflammatory nodules(3 intranodal radiomics features,1 perinodal radiomics features and 3 intranodal and perinodal radiomics features).The combined model is best,AUC is 0.91.Conclusion Spectral CT parameters,intranodal and perinodular radiomics features can be used to distinguish lung adenocarcinoma nodules from inflammatory nodules.

Dual-Detector Spectral CTRadiomicsPulmonary NodulesDifferential Diagnosis

原淼、田晓娟、乔英

展开 >

山西医科大学医学影像学院

山西医科大学第一医院影像科(山西太原 030001)

双层探测器光谱CT 影像组学 肺结节 鉴别诊断

2024

中国CT和MRI杂志
北京大学深圳临床医学院 北京大学第一医院

中国CT和MRI杂志

CSTPCD
影响因子:1.578
ISSN:1672-5131
年,卷(期):2024.22(12)