首页|影像组学基于平扫CT预测尘肺分期的应用研究

影像组学基于平扫CT预测尘肺分期的应用研究

扫码查看
目的 探讨胸部平扫CT影像组学特征在尘肺患者筛查和分期中的应用价值.方法 回顾性分析本院经临床确诊的108例尘肺患者的临床资料及胸部CT影像资料,其中壹期尘肺69例、贰期尘肺34例、叁期尘肺5例,按照7:3比例随机分为训练集(n=70)及验证集(n=38),利用MitkWorkbench软件对胸部CT图像进行半自动手动分割感兴趣区(ROI),通过3D Slicer提取影像组学图特征,采用计算组内相关系数(ICC)、相关性分析去除特征之间的冗余,以L1正则化方法进行特征筛选,采用Random Forest分类器建立尘肺分期预测模型,以准确率、灵敏度、特异度及受试者工作特征(ROC)曲线评估模型效能.结果 不同疾病分期患者年龄、性别、工龄比较,无明显差异(P>0.05).影像组学模型在训练集中壹~叁期尘肺鉴别的AUC值分别为0.827、0.820、0.962,在验证集中壹~叁期尘肺鉴别的AUC值分别为0.823、0.817、1.000,准确率、灵敏度、特异度均高于75%.结论 基于平扫胸部CT提取的影像组学特征,能够较为准确对尘肺患者分期进行诊断、筛选,具有较高的临床价值.
Application of Imaging Omics to Predict the Stage of Pneumoconiosis Patients Based on Plain CT Scan
Objective To investigate the application value of chest CT imaging features in screening and staging of pneumoconiosis patients.Methods The clinical data and chest CT imaging data of 108 patients with clinically diagnosed pneumoconiosis in our hospital were retrospectively analyzed,including 69 cases of stage Ⅰ,34 cases of stage Ⅱ,and 5 cases of stage Ⅲ.The patients were randomly divided into the training set(n=70)and the verification set(n=38)according to the ratio of 7:3.MitkWorkbench software was used to conduct semi-automatic manual segmentation of ROI on chest CT images.3D Slicer was used to extract the features of the image omics map,the intra-group correlation coefficient(ICC)calculation and correlation analysis were used to remove the redundancy between features,and L1 regularization method was used for feature screening.The Random Forest classifier was used to establish the stage prediction model of pneumoconiosis,and the accuracy,sensitivity,specificity and receiver operating characteristic(ROC)curve were used to evaluate the efficiency of the model.Results There was no significant difference in age and service among patients with different disease stages(P>0.05).The AUC for the identification of pneumoconiosis from stage Ⅰ to Ⅲ in the training set was 0.827,0.820 and 0.962,respectively,and the AUC for the identification of pneumoconiosis from stageⅠ to Ⅲ in the validation set was 0.823,0.817 and 1.000,respectively,with the accuracy,sensitivity and specificity higher than 75%.Conclusion The image omics features extracted from chest CT can accurately diagnose and screen the stage of pneumoconiosis patients,which has high clinical value.

PneumoconiosisPlain Scan CTimaging OmicsMachine LearningX-ray ComputerBy Stages

胡英良、张海燕、胡春峰

展开 >

徐州医科大学院第二附属医院影像科(江苏徐州 221006)

徐州医科大学附属医院影像科(江苏徐州 221000)

尘肺 平扫CT 影像组学 机器学习 X线计算机 分期

2024

中国CT和MRI杂志
北京大学深圳临床医学院 北京大学第一医院

中国CT和MRI杂志

CSTPCD
影响因子:1.578
ISSN:1672-5131
年,卷(期):2024.22(12)