首页|基于沙地猫群优化-最小二乘支持向量机的动态NOx排放预测

基于沙地猫群优化-最小二乘支持向量机的动态NOx排放预测

扫码查看
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持 向量机(least squares support vector machine,LSSVM)NOx动态预测模型.首先利用k近邻互信息计算时间延迟的同时筛选辅助变量.然后,基于SCSO算法进行输入变量阶次的选择.使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型).最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证.结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性.
Dynamic NOx Emission Prediction Based on Sandcat Swarm Optimization-least Squares Support Vector Machine
Aiming at the problem that the frequent peak shaving of thermal power units leads to the unstable combustion state of the unit,causing a large fluctuation range of NOx generation at the boiler outlet,a dynamic NOx emission model based on Sand Cat Swarm Optimization(SC SO)and Least Squares Support Vector Machine is proposed.First,the k-nearest neighbor mutual information is used to calculate the time delay and filter auxiliary variables.Then,based on SCSO algorithm,the order of input variable is selected.Using the information including the time delay and order of auxiliary variables as the input of the model,the SCSO algorithm optimizes the parameters of the least squares support vector machine and establishes the least squares support vector machine prediction model of dynamic NOx emission(SCSO-LSSVM dynamic soft sensing model).Finally,the model is compared with the LSSVM model without delay,the LSSVM model with delay and the dynamic soft sensor model with Particle Swarm Optimization algorithm to optimize the parameters of least squares support vector machine.The results show that,compared with other models,the SCSO-LSSVM dynamic soft sensor model established in this paper has the smallest root mean square error,the smallest mean absolute error and the smallest mean absolute error,while it has the highest prediction accuracy.Moreover,it can also predict the NOxproduction well when the NOx production fluctuates sharply,and has good dynamic characteristics.

NOx concentrationk nearest neighbor mutual informationsandcat swarm optimization algorithmleast squares support vector machinesoft sensor model

金秀章、史德金、乔鹏

展开 >

华北电力大学控制与计算机工程学院,河北省保定市 071003

NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量机 软测量模型

2024

中国电机工程学报
中国电机工程学会

中国电机工程学报

CSTPCD北大核心
影响因子:2.712
ISSN:0258-8013
年,卷(期):2024.44(1)
  • 20