首页|基于多向差分进化算法的氢燃料电池市域动车组运行协同优化

基于多向差分进化算法的氢燃料电池市域动车组运行协同优化

扫码查看
为提高氢燃料电池市域动车组的运行经济性,该文提出一种基于多向差分进化算法的氢燃料电池市域动车组运行协同优化方法.针对氢燃料电池市域动车组运行速度曲线与能量管理的耦合影响,以日均损耗价值成本评价运行综合经济性,通过多向差分进化算法离线优化运行速度和能量管理规则,并根据离线优化结果,对燃料电池和锂电池进行实时功率分配.最后,基于硬件在环平台验证所提方法在单运行区间和多运行区间下的有效性.结果表明,所提方法能够有效降低氢燃料电池市域动车组的日均损耗价值,并保证收敛精度和维持锂电池荷电状态.而且在单运行区间下,所提方法的日均损耗价值分别比优化前、仅速度优化、仅能量管理优化方法降低了 15.21%、6.9%、9.51%;在多运行区间下,所提方法的日均价值损耗比分步优化方法降低了5.07%.
Collaborative Optimization of Hydrogen Fuel Cell Urban Emu Operation Based on Multi-directional Differential Evolution Algorithm
To improve the operation economy of hydrogen fuel cell urban Electric Multiple Units(EMU),this paper proposes a collaborative optimization method for hydrogen fuel cell urban EMU operation based on a multi-directional differential evolution algorithm.The method focuses on the coupling effect of the operating speed profile and energy management of hydrogen fuel cell urban EMU,evaluates the comprehensive operating economy by the average daily loss value cost,optimizes the operating speed and energy management rules offline by a multi-directional differential evolutionary algorithm,and performs real-time power allocation for fuel cells and lithium batteries according to the offline optimization results.Finally,the effectiveness of the proposed method is verified under single-operation ranges and multi-operation ranges based on the hardware-in-the-loop platform.The results show that the proposed method can effectively reduce the average daily value loss of hydrogen fuel cell urban EMU,ensure convergence accuracy and maintain the lithium battery state.Moreover,in the single operating range,the average daily value loss of the proposed method in this paper is 15.21%,6.9%,and 9.51% lower than that of the pre-optimization,speed-only optimization,and energy management-only optimization methods,respectively.The average daily value loss of the proposed method in this paper is reduced by 5.07% from that of the stepwise optimization method under multiple operating ranges.

fuel cellsenergy management strategyurban EMU operating speed profileco-optimization method

刘普仁、李奇、孟翔、罗舒钰、李荦一、刘述奎、陈维荣

展开 >

西南交通大学电气工程学院,四川省 成都市 610031

国网四川省电力公司成都供电公司,四川省 成都市 610000

燃料电池 能量管理方法 市域动车组运行速度曲线 协同优化方法

国家自然科学基金项目国家自然科学基金项目四川省自然科学基金项目

52377123519771812022NSFSC0027

2024

中国电机工程学报
中国电机工程学会

中国电机工程学报

CSTPCD北大核心
影响因子:2.712
ISSN:0258-8013
年,卷(期):2024.44(3)
  • 11