首页|基于行波全景特征深度挖掘的单端故障定位方法

基于行波全景特征深度挖掘的单端故障定位方法

扫码查看
现有的故障定位方法基于局部波头故障特征,存在微弱故障(过零点附近故障、高阻接地故障)和母线出口处故障定位失败的技术瓶颈。为此,论文提出一种基于行波全景特征深度挖掘的单端故障定位方法。首先,基于时频域行波全景波形,理论和仿真论证了时域各次波头到达时序能反映不同故障区段,各次波头频率分布能反映故障位置,定性分析了行波全景波形与故障位置一一对应的映射机理,论证了行波全景波形唯一性理论;然后,以时频域故障全景波形为输入特征量,利用轻量级 LeNet-5 模型构建卷积神经网络(convolution neural network,CNN),并采用3×3小尺寸卷积核挖掘全景波形故障特征,建立全景波形特征量与故障距离的映射关系,实现精确故障定位;最后,利用激活热力图可视化技术展现 CNN 各卷积通道挖掘全景波形故障敏感特征,有力论证了所提方法具有强适应性的内在原因。仿真结果表明该文所提方法具有较高的定位精度,特别是针对微弱故障和母线出口处故障具有较强的算法适应性,故障定位平均绝对误差为99。855 m。
Single-ended Fault Location Method Based on Traveling Wave Panoramic Fault Characteristics Deep Mining
The existing fault location methods only use the local fault characteristic of traveling wavefront,which results in fault location failure at weak faults(zero crossing fault,high impedance fault)and close-in faults.Therefore,a single-ended fault location method based on traveling wave panoramic fault characteristics deep mining is proposed in this paper.Firstly,based on the time-frequency domain traveling wave full waveform(TWFW),it is proved theoretically and simulated that traveling wave arrival sequence in time domain can reflect different fault sections,and the frequency distribution of traveling wavefronts can reflect the fault location.The mapping mechanism between TWFW and fault distance is qualitatively analyzed,and the uniqueness theory of TWFW is demonstrated.Then,taking the TWFW as the input of convolution neural network(CNN),the CNN referred from the lightweight LeNet-5 is built.The 3×3 small size convolution kernel is used to mining the panoramic fault characteristics of TWFW.The mapping relationship between the panoramic fault characteristics of TWFW and fault distance is established,so as to realize accurate fault location.Finally,the Grad-CAM visualization method is utilized to show the fault sensitive feature of TWFW mined in each convolution channel of CNN.It strongly demonstrates the internal reason for the robustness of the proposed method.The simulation results show that the proposed method has high fault location accuracy,especially for weak fault and close-in fault.The average absolute error of fault location is 99.855 m.

single-ended fault locationtraveling wavepanoramic characteristicsconvolution neural networkGrad-CAMfeature visualization

邓丰、曾哲、祖亚瑞、黄懿菲、冯思旭、张振、曾祥君

展开 >

长沙理工大学电气与信息工程学院,湖南省 长沙市 410114

国家电网石家庄供电公司,河北省 石家庄市 050052

单端定位 行波 全景特性 卷积神经网络 激活热力图 可视化

国家自然科学基金

52077008

2024

中国电机工程学报
中国电机工程学会

中国电机工程学报

CSTPCD北大核心
影响因子:2.712
ISSN:0258-8013
年,卷(期):2024.44(4)
  • 29