首页|基于知识融合和深度强化学习的智能紧急切机决策

基于知识融合和深度强化学习的智能紧急切机决策

扫码查看
紧急控制是在严重故障后维持电力系统暂态安全稳定的重要手段.目前常用的"人在环路"离线紧急控制决策制定方式存在效率不高、严重依赖专家经验等问题,该文提出一种基于知识融合和深度强化学习(deep reinforcement learning,DRL)的智能紧急切机决策制定方法.首先,构建基于DRL的紧急切机决策制定框架.然后,在智能体处理多个发电机决策时,由于产生的高维决策空间使得智能体训练困难,提出决策空间压缩和应用分支竞争 Q(branching dueling Q,BDQ)网络的两种解决方法.接着,为了进一步提高智能体的探索效率和决策质量,在智能体训练中融合紧急切机控制相关知识经验.最后,在10机39 节点系统中的仿真结果表明,所提方法可以在多发电机决策时快速给出有效的紧急切机决策,应用BDQ网络比决策空间压缩的决策性能更好,知识融合策略可引导智能体减少无效决策探索从而提升决策性能.
Intelligent Emergency Generator Rejection Schemes Based on Knowledge Fusion and Deep Reinforcement Learning
Emergency control is an important means of maintaining power system transient security and stability following serious faults.The current popular"human-in-the-loop"offline emergency control decision-making method has some drawbacks,including low efficiency and heavy reliance on expert experience.Therefore,this paper proposes an intelligent emergency generator rejection decision-making method based on knowledge fusion and deep reinforcement learning(DRL).First,a DRL-based emergency generator rejection decision-making framework is built.Then,when the agent deals with multi-generator decisions,the resulting high-dimensional decision space makes the agent training difficult.There are two solutions proposed:decision space compression and the application of a branching dueling Q(BDQ)network.Next,to further improve the exploration efficiency and the decision-making quality of the agent,the knowledge and experience related to emergency generator rejection control are integrated to the agent training.Finally,the simulation results in the 10-machine 39-bus system show that the proposed method can quickly give effective emergency generator rejection decisions in multi-generator decision-making.Applying a BDQ network has better decision performance than decision space compression.The knowledge fusion strategy can guide the agents to reduce ineffective decision-making explorations and improve decision-making performance.

emergency generator rejection decisiondeep reinforcement learningdecision spacebranching dueling Q networkknowledge fusion

李舟平、曾令康、姚伟、胡泽、帅航、汤涌、文劲宇

展开 >

强电磁工程与新技术国家重点实验室(华中科技大学电气与电子工程学院),湖北省 武汉市 430074

田纳西大学电气工程与计算机科学系,美国 田纳西州 诺克斯维尔市 37996

中国电力科学研究院有限公司,北京市 海淀区 100192

紧急切机决策 深度强化学习 决策空间 分支竞争Q网络 知识融合

国家自然科学基金项目

U1866602

2024

中国电机工程学报
中国电机工程学会

中国电机工程学报

CSTPCD北大核心
影响因子:2.712
ISSN:0258-8013
年,卷(期):2024.44(5)
  • 27