改进型纯氧-纯氢燃烧Graz循环优化与参数影响规律
Optimization and Parameter Influence of a Revised Graz Cycle With Pure Oxygen and Hydrogen Fuel
余世达 1胡博 1李雪松 1任晓栋 1李想 2顾春伟1
作者信息
- 1. 热科学与动力工程教育部重点实验室(清华大学能源与动力工程系),北京市 海淀区 100084
- 2. 北京大学能源研究院,北京市 海淀区 100871
- 折叠
摘要
为提升储氢发电的能源利用率,该文在Graz循环的基础上,提出一种改进型Graz循环(R-Graz循环),可实现更为高效的氢-电转换.循环的建模与优化程序基于MATLAB 平台开发,工质热力性质由 REFPROP 得到,计算结果表明:R-Graz循环的设计点净效率可达 70.98%,比同等输入参数的 Graz 循环高约 0.5%,远高于现代燃气-蒸汽联合循环.在相同的氢使用量下,R-Graz 循环系统相较Graz循环系统,可多生产0.34%的电能.对关键参数的影响规律分析表明,提升高温燃气透平进口温度、进口压力、高压蒸汽透平进口温度,降低冷凝压力均有助于提升 R-Graz循环效率,其中高温燃气透平进口压力、冷凝压力的影响尤为显著.结果为电-氢-电模式的应用提供了新的路径,为部件设计以及参数选择提供了参考.
Abstract
In order to improve the energy efficiency of hydrogen storage for power generation,in this work,based on the Graz cycle,an improved Graz cycle(R-Graz cycle)is proposed,which can realize more efficient hydrogen to electricity conversion.The modeling and optimization program of the cycle is developed based on MATLAB,and the thermodynamic properties of the working fluid are obtained by REFPROP.The results show that the R-Graz cycle can reach a net efficiency of 70.98%at the design point,which is about 0.5%higher than that of the Graz cycle with the same input parameters,and much higher than that of the modern gas-steam combined cycle.With the same amount of hydrogen used,the R-Graz cycle can produce 0.34%more electricity than the Graz cycle.Analysis on the influence of key parameters shows that increasing the inlet temperature and pressure of the high-temperature gas turbine and the inlet temperature of the high-pressure steam turbine as well as reducing the condenser pressure are conducive to improving the R-Graz cycle efficiency,among which the influence of the inlet pressure of the high-temperature gas turbine and condenser pressure is particularly significant.This research provides a new path for the application of electricity-hydrogen-electricity mode,and provides a reference for component design and parameter selection.
关键词
纯氧燃烧/燃气轮机循环/氢能利用/热力学分析Key words
oxy-fuel combustion/gas turbine cycle/hydrogen utilization/thermodynamic analysis引用本文复制引用
基金项目
航空发动机及燃气轮机基础科学中心项目(P2021-A-I-003-002)
国家科技重大专项(J2019-I-0009-0009)
国家科技重大专项(2017-II-0007-0021)
出版年
2024